New limits on physics beyond the Standard Model in parity-violating electron scattering

Ross Young
R. Carlini, J. Roche, A. Thomas
Outline

• Status of PV electron-quark interactions
• Hadronic structure in PVES SM tests
 – Strangeness content of the nucleon
• New experimental limits on low-energy PV electron(A)-quark(V) interactions
• Qweak Experiment
PV Electron-Quark Couplings

Couplings precisely determined by high-energy measurements and SM scale evolution

Precise low-energy measurements can reveal new beyond the Standard Model physics
PV Electron-Quark Couplings

Precise low-energy measurements can reveal new beyond the Standard Model physics.
C_{1q} Couplings

![Diagram showing the coupling constants C_{1u} and C_{1d} with regions from SLAC: D DIS, Mainz: Be, APV Tl, and APV Cs. The 95% CL confidence level is indicated.]
C_{2q} Couplings

$C_{2u} + C_{2d}$ vs. $C_{2u} - C_{2d}$

Mainz: Be
CERN: μ–C DIS
SLAC: D DIS
SAMPLE: D

95% CL
Qweak Experiment

• Precise measurement of the proton’s weak charge in PVES
 \[Q_p^{\text{weak}} = -2(2C_{1u} + C_{1d}) \]
 \[Q^2 = 0.03 \text{GeV}^2, \ \theta = 8^\circ \]

• At low energy and small scattering angle:

\[A_{LR} = - \frac{G_{\mu} Q^2}{4\pi\alpha \sqrt{2}} \left[Q_{\text{weak}} + \beta_A \tilde{G}_A^p \sqrt{Q^2} + \beta_V Q^2 + \ldots \right] \]

\[\beta_A \propto \theta + O(\theta^3) \]

Anapole uncertainty

Strangeness uncertainty
Strangeness Measurements

- Dedicated measurements to determine strangeness content of nucleon: SAMPLE, A4-Mainz, HAPPEX, G0
- Constrain hadronic background for Qweak!

Global fits to all data $Q^2 < 0.3 \text{ GeV}^2$

\[
G_E^s = \rho_s Q^2 + \rho'_s Q^4 + \ldots
\]

\[
G_M^s = \mu_s + \mu'_s Q^2 + \ldots
\]

\[
\tilde{G}_A = \tilde{g}_A^N \left(\frac{1}{1 + Q^2 / M_A^2} \right)^2
\]

\[
\tilde{g}_A^N = \left(\xi_{A}^{T=1} g_A \tau_3 + \xi_{A}^{T=0} a_8 + \xi_{A}^0 a_s \right) + \left(A_{\text{ana}}^{T=1} \tau_3 + A_{\text{ana}}^{T=0} \right)
\]
Strangeness @ $Q^2=0.1 \text{ GeV}^2$

- RDY et al., PRL(2006)
 - SAMPLE, PVA4, HAPPEX, G0

- New precision
 - HAPPEX nucl-ex/0609002

- Leinweber, RDY et al., PRL(2005,2006)

95% CL
Electroweak Couplings in PVES

- Without Qweak experiment, what are the present limits on C_{1q}?
- Repeat global fits with weak charges free – and free hadronic structure
Proton Weak Charge Extrapolation

![Graph showing the extrapolation of proton weak charge with data points from SAMPLE, HAPPEX, G0, and PVA4. The graph plots A_{LR}^p vs. Q^2 (GeV2).]
C_{1q} Couplings with PVES
C_{2q} Couplings with PVES

- Mainz: Be
- CERN: μ–C DIS
- SLAC: D DIS

95% CL
Remarks

• New precision PVES providing critical test of hadronic theory

• Experimental knowledge of electroweak couplings improved by factor ~ 5

• Can now provide model-independent limits on new physics in general isospin parameter space
The Qweak Measurement!