L-T Separation in Pseudoscalar Meson Production

Dave Gaskell Jefferson Lab

Exclusive Meson Production and Short Range Hadron Structure January 23, 2014

1

Motivation for L-T separations

- Inclusive Deep Inelastic Scattering
 - Primary interest is in F_2 structure function dominated by transverse photons
 - $R = \sigma_L / \sigma_T$ small (~0.2)
 - Measurements of unseparated cross sections, combined with fits to *R* often yield sufficient precision for extraction of PDFs
- Exclusive Meson Production
 - Access to leading twist GPDs requires σ_L , transversity GPD requires σ_T
 - $R=\sigma_L/\sigma_T$ relatively poorly known large for some π^+ kinematics, now expected to be small for π^0

Unpolarized Pion Cross Section

L-T separation required to extract σ_L and σ_T

Measuring σ_{L} and σ_{T}

d²σ/dtdφ (μb/GeV²)

Rosenbluth separation required to isolate σ_L

→Measure cross section at fixed (W,Q2,-t) at 2 beam energies →Simultaneous fit at 2 ε values to determine σ_L , σ_T , and interference terms

Control of point-to-point systematic uncertainties crucial due to $1/\varepsilon$ error amplification in σ_L

Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies, ...

Separated Cross Sections - Precision

Final precision on separated cross sections (σ_L and σ_T) dictated by things we can and cannot control

1. Point-to-point systematic uncertainties

Can be optimized, but at some point a "floor" is reached \rightarrow 1.5 to 1.6%

2. Δε

Dictated by beam energy, capability of spectrometers

3. $R = \sigma_L / \sigma_T$

Relative precision on separated cross section dictated by the physics of the reaction

σ_L Uncertainties

Jefferson Lab

σ_L Uncertainties

7

Example: F_π **Experiments**

 F_{π} -1 (F_{π} -2) ran in Hall C in 1997 (2003)

- → Used SOS/HMS (well understood magnetic focusing spectrometers)
- → Good control of kinematic offsets

Total ε uncorrelated uncertainty ~ 2%

Largest contributions

- 1. Model dependence (bin centering, radiative corrections)
- 2. Electron scattering angle \rightarrow 0.5 mrad
- 3. Acceptance

Even if systematic uncertainties small, final unc. on σ_L can still be large Jefferson Lab

Correction	Uncorr.	ϵ uncorr.	Corr.
	(pt-to-pt)	t corr.	(scale)
	(%)	(%)	(%)
Acceptance	1.0(0.6)	0.6	1.0
Model Dep	0.2	1.1 - 1.3	0.5
$\mathrm{d}\theta_e$	0.1	0.7-1.1	
dE_{beam}	0.1	0.2-0.3	
dP_e	0.1	0.1-0.3	
$\mathrm{d} heta_{\pi}$	0.1	0.2 - 0.3	
Radiative corr		0.4	2.0
Pion absorption		0.1	2.0
Pion decay	0.03		1.0
HMS Tracking		0.4	1.0
SOS Tracking		0.1	0.5
Charge		0.3	0.4
Target Thickness		0.2	0.9
CPU dead time		0.2	
HMS Trigger		0.1	
SOS Trigger		0.1	
Ele DT		0.3	
Coincidence block.		0.1	
Particle ID		0.2	
Total (Fpi-2)	1.2(0.9)	1.8-1.9	3.5
Total (Fpi-1)	0.7	1.7-2.0	2.8

Blok et al, Phys.Rev. C78 (2008) 045202

Example: F_π **Experiments**

Results and precision

 $\frac{Q^2 = 1.6 \text{ GeV}^2}{\Delta \varepsilon} = 0.25$ $R = \sigma_L / \sigma_T = 2.16 \text{ to } 0.69$ $d\sigma_L / \sigma_L \sim 9.3 - 19.3\%$ $d\sigma_T / \sigma_T \sim 9.6 - 8\%$

 $\frac{Q^2 = 2.45 \text{ GeV}^2}{\Delta \varepsilon} = 0.27$ $R = \sigma_L / \sigma_T = 1.27 \text{ to } 0.45$ $d\sigma_L / \sigma_L \sim 10-24\%$ $d\sigma_T / \sigma_T \sim 6.5\%$

Blok et al, Phys.Rev. C78 (2008) 045202

F_{π} -12 Precision

		Type of systematic uncertainty		
		pt-to-pt	t-correlated	scale
F_{π} -12 precision will be improved by new SHMS	Source	(%)	(%)	(%)
	Acceptance	0.4	0.4	1.0
	Target Thickness		0.2	0.8
→ Acceptance and optics should be easier to understand	Beam Charge		0.2	0.5
	HMS+SHMS Tracking	0.1	0.1	1.5
	Coincidence Blocking		0.2	
	PID		0.4	
→ Total ε- uncorrelated uncertainty = 1.7%	π Decay	0.03		0.5
	π Absorption		0.1	1.5
	Monte Carlo Generator	0.2	1.0	0.5
	Radiative Corrections	0.1	0.4	2.0
	Offsets	0.4	1.0	
	Quadrature Sum	0.6	1.6	3.3
	Fpi-2 Values	0.9	1.9	3.5

6 GeV L-T Separations: π^{-}/π^{+} Ratios

 F_{π} experiments also took D(e,e' π) data for π + and π -

- \rightarrow Extracted separated cross sections
- \rightarrow Emphasis on π -/ π + ratios of separated cross sections
- $\rightarrow R_{1} \rightarrow 1$ for pole dominance

Jefferson Lab

Huber et al, Phys.Rev. C91 (2015) 015202

6 GeV L-T Separations: PionCT

PionCT experiment:

- \rightarrow Ran in Hall C in 2004
- → Look for color transparency via A(e,e' π +)/H(e,e' π +)
- → Measured L-T separated cross sections at Q²=2.15 and Q²=3.91 GeV² for hydrogen, deuterium, carbon, and copper

X. Qian, et al, Phys.Rev. C81 (2010) 055209

Jefferson Lab

Horn et al Phys.Rev. C78 (2008) 058201

6 GeV L-T Separations: π⁰ Cross Sections

E07-007:Separation of Deeply Virtual Photon and pi-0 Electroproduction Observables of Unpolarized Protons

Fuchey et al, Phys.Rev. C83 (2011) 025201

L-T Separated Cross sections at 12 GeV

- Experiments with 11 GeV will build on experience gained during 6 GeV era
- Hall C: new Super-HMS
 - Designed with very small angle capability in mind (5.5 degrees) $\rightarrow \Delta \epsilon$ reach
 - Well-matched to HMS for coincidence acceptance
- Additional new equipment: Neutral Particle Spectrometer (NPS) → π⁰ Rosenbluth separations
- Approved program includes $\pi^{+/-}$, K⁺, π^0

F_{π} at 12 GeV

Deep Exclusive π+ and K+

E12-07-105: T. Horn, G. Huber

E12-09-011: T. Horn, G. Huber, P. Markowitz

 π -/ π + measurements at x=0.4 setting

Deep exclusive π + and K+ in Hall C

- \rightarrow Look for scaling in cross section
- → Study reaction mechanism

Kaon Form Factor

Deep Exclusive π⁰

 $\sigma_{\rm L} \rightarrow$ access to leading twist GPDs

 $\sigma_T \rightarrow$ access to transversity GPD, H_T

Requires new, neutral particle spectrometer in Hall C to detect high energy photons

No existing L-T separated data above resonance region

x=0.36, Q²=3-5.5 GeV² x=0.5, Q²=3.4, 4.8 GeV² x=0.6, Q²=5.1, 6.0 GeV²

E12-13-10: C. Munoz Camacho, T. Horn, C. Hyde, R. Paremuzyan, J. Roche

π^0 cross sections and F_{π}

Much interest in extracting the pion form factor at larger Q^2

- \rightarrow F_{π}-12 will measure to Q²=6 GeV²
- → Upper limit in part dictated by requirement for pole dominance
- → Only one quantitative calculation that estimates contribution of non-pole backgrounds [Carlson and Milana, PRL 65, 1717 (1990)]

→ Pole dominates only for $|t_{min}| < 0.2$

Can also estimate non-pole backgrounds using GPDs

 $\rightarrow \pi^0$ and π^+ cross sections involve different combinations of same GPDs

$$\pi^{0} \begin{array}{c} A_{p\pi^{o}} \sim (e_{u}\widetilde{H}^{u} - e_{d}\widetilde{H}^{d}) \\ B_{p\pi^{o}} \sim (e_{u}\widetilde{E}^{u} - e_{d}\widetilde{E}^{d}) \end{array}$$

$$\pi^{+} \begin{bmatrix} A_{p\pi^{+}} \sim (\widetilde{H}^{u} - \widetilde{H}^{d})(e_{u} + e_{d}) \\ B_{p\pi^{+}} \sim (\widetilde{E}^{u} - \widetilde{E}^{d})(e_{u} + e_{d}) \end{bmatrix}$$

Measurement of $\sigma_{\rm L}$ in π^0 production could help us access F_{π} at larger Q^2

 \rightarrow But large fractional uncertainties due to unfavorable *R* could make this difficult

Extract σ_L with no Rosenbluth separation?

In principle possible to extract $R = \sigma_L / \sigma_T$ using polarization degrees of freedom

A similar relation holds for pion production from a polarized target if we re-define χ_z

$$\chi_z = \frac{1}{2P_e P_T \sqrt{1 - \epsilon^2}} A_z$$

 A_z = target doublespin asymmetry

Parallel Kinematics

Polarization relation for extracting σ_L/σ_T only applies in parallel kinematics – how quickly does this relation break down away from $\theta_{CM} = 0$?

L/T Extraction

Extraction via this technique requires strict cuts on θ_{CM}

Summary

- Rosenbluth separations extremely challenging from experimental perspective
 - Excellent control of point-to-point systematics absolutely required
 - Even then, unfavorable value of $R = \sigma_L / \sigma_T$ may limit relative precision
- Existing L-T (JLab 6 GeV) separated data mostly charged pions
 - π^0 data from Hall A DVCS program under analysis
 - Some kaon data at W<2 GeV
- In 12 GeV era, a broader range of L-T separated data will be available
 - Increased kinematic reach for charged pions
 - First ever kaon data above resonance region
 - π^0 data at larger Q²
- In some cases, we may not get the precision/information needed or desired (e.g., π^0 longitudinal cross sections)
 - Polarization degrees of freedom may help but only in limited kinematics

Extra

σ_L Precision at large -t

Projections based on VR model

Vrancx and Ryckebusch, Phys. Rev. C 89, 025203 (2014)

pQCD Contributions to $H(e,e'\pi^*)$

In addition to Born terms, pQCD processes can also contribute to π^+ production

Carlson and Milana [PRL 65, 1717 (1990)] calculated these contributions for Cornell kinematics \rightarrow Asymptotic form for $F_{\pi} \rightarrow$ King-Sachrajda nucleon distribution

For -t>0.2 GeV², pQCD contributions grow rapidly \rightarrow This helps set the constraint on maximum accessible Q² (fixed W, $-t_{min}$ grows w/Q²)

mmmm

Q ² (GeV ²)	W(GeV)	-t (GeV ²)	M _{pQCD} /M _{pole}
1.94	2.67	0.07	0.12
3.33	2.63	0.17	0.18
6.30	2.66	0.43	0.81
9.77	2.63	0.87	2.82

Kinematic Constraints on -t_{min}

Beam energy = 11 GeV

Minimum value of –t reached when pion emitted in direction of virtual photon

Require $-t_{min}$ <0.2 for form factor extraction

 F_{π} -12 will reach Q²=6 GeV² detecting scattered electron and pion

Jefferson Lab

Note: $F_{\pi}\text{-}12$ reach also constrained by requirements to detect forward pion

Kinematic Constraints on -t_{min}

Ultimate Q² reach of pion form factor program at JLab dictated by beam energy, and minimum accessible pion angle.

Separated π -/ π + Ratios

- F_{π} -1 and F_{π} -2 measured π -/ π + cross sections and ratios in the $D(e,e'\pi$ +)nn and $D(e,e'\pi$ -)pp reactions
- Longitudinal ratios:
 - Pole dominance implies $\sigma_L(\pi-)/\sigma_L(\pi+) \sim 1$
 - Deviation from 1 suggests non-pole backgrounds → complications for pion form factor extraction
- Transverse ratios
 - − As –*t* increases, $\sigma_T(\pi)/\sigma_T(\pi+)$ approaches $\frac{1}{4}$ → implies scattering from quarks in nucleon
- Extraction of ratios from deuterium → assumes that nuclear effects are either small or largely cancel in the ratio
 - Example: proton-proton, neutron-neutron final state interactions known not to exactly cancel at very small relative momentum
 - Any issues due to nucleon virtuality?

