Meson Form Factors

Exclusive Meson Production Workshop, Jefferson Lab, 22-24 January 2015

Overview

Form factors are essential for our understanding of internal hadron structure and the dynamics that bind the most basic elements of nuclear physics

Fundamental properties of meson form factors

- Pion and kaon form factors are of special interest connected to the Goldstone modes of dynamical chiral symmetry breaking
- The pion is the lightest and one of the simplest QCD systems available for study – clearest test case for studies of the transition between nonperturbative and perturbative regions
- Recent advances in experiments: last 5-10 years
 - > Dramatically improved precision in F_{π} measurements
 - New results on the pion transition form factor (TFF)
- □ Form factor data drive renewed activity on the theory side
 - Distribution amplitudes signatures of dynamical chiral symmetry breaking
 - Contribution of transversely polarized photons to meson cross section

Measurement of π^+ Form Factor

- At low Q², F_{π^+} can be measured directly via high energy elastic π^+ scattering from atomic electrons
 - CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia et al, NPB277, 168 (1986)]
 - These data used to constrain the pion charge radius: $r_{\pi} = 0.657 \pm 0.012$ fm
- At larger Q², F_{π+} must be measured indirectly using the "pion cloud" of the proton via the p(e,e'π⁺)n process
 - At small –*t*, the pion pole process dominates σ_L
 [Kroll/Goloskokov EPJ C65 (2010), 137]

Extracting σ_L from exclusive π^+ data – some experimental points: L/T separation

- □ *Experiment:* detect scattered electron and pion and reconstruct the undetected neutron mass: $M_n^2 = (P_e^\mu P_p^\mu P_{e'}^\mu P_{\pi}^\mu)^2$
- Analysis: replicate the physical acceptance of the channel studied using a MC (spectrometer, rad. Effects, energy loss, multiple scattering, etc.)
- Analysis: extract σ_L by simultaneous fit to the measured yields vs. azimuthal angle, φ, and virtual photon polarization, ε

$$2\pi \frac{d^2\sigma}{dt\,d\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

I Important points - L/T separation -> see D. Gaskell talk for details

- \circ Overlapping data at high and low ε
- \circ Azimuthal angle coverage between 0 and π for interference terms
- Understanding of physical acceptance & control of uncertainties

4

d²σ/dtdφ (μb/GeV²)

Determine F_{π} from data: Chew-Low Extrapolation Method

- $p(e,e'\pi^+)n$ data are obtained a distance away from the $t = m_{\pi}^2$ pole
 - "*Chew-Low*" extrapolation method requires knowing the analytical dependence of $d\sigma_L/dt$ through the unphysical region
- Extrapolation method last used in 1972 by Devnish & Lyth [PRD 5, 47]
 - Very large systematic uncertainties
 - Fails to produce reliable results different polynomial fits equally likely in physical region give divergent form factor values when extrapolated to $t = m_{\pi}^2$

Chew-Low method is not used in F_{π} extractions anymore

Preferred and currently used method is to use a model incorporating the π^+ mechanism and the spectator nucleon to extract F_{π} from σ_L

F_{π} from σ_{L} data using VGL/Regge model

JLab F_{π} experiments used the VGL Regge model as it has proven to give a reliable description of σ_{L} across a wide kinematic domain

[Vanderhaeghen, Guidal, Laget, PRC 57, 1454 (1998)]

- Feynman Propagator replaced by π and ρ Regge trajectories $\alpha_{\pi}(t) = \alpha_{\pi}(t-m_{\pi}^2)$

$$\left(t-m_{\pi}^{2}\right)^{-1} \Longrightarrow \frac{\pi\alpha_{\pi}}{2} \left(\alpha_{\pi}(t)+1\right) \frac{1+\exp\left[-i\pi\alpha_{\pi}(t)\right]}{\sin\pi\alpha_{\pi}(t)} \left(\frac{W}{W_{0}}\right)^{2\alpha_{\pi}}$$

- Model parameters fixed by pion photoproduction data
- Free parameters (trajectory cutoff): $\Lambda_{\pi}, \Lambda_{\rho}$

$$F_{\pi}(Q^{2}) = \frac{1}{1 + Q^{2} / \Lambda_{\pi}^{2}}$$

Fit of σ_{L} to model gives F_{π} at each Q^{2}

$$\Lambda_{\pi}^{2} = 0.513, 0.491 GeV^{2}$$

 $\Lambda_{\rho}^{2} = 1.7 GeV^{2}$

6

Electroproduction method consistency check

 Directly compare F_π(Q²) values extracted from very low –t electroproduction with the exact values measured in elastic e-π scattering

 Method passes check: Q²=0.35 GeV² data from DESY consistent with limit of elastic data within uncertainties

[H. Ackernman et al., NP B137 (1978) 294]

 More detailed tests planned with future 12 GeV experiment taking data at 50% lower -t (0.005 GeV²)

Precision data: check of t-channel dominance in σ_L with charged pion ratios in deuterium

- **2014**: new results from ²H target L/T separations [Huber et al, PRL112 (2014)182501]
- π⁺ *t*-channel diagram is pure isovector (G-parity conservation)

$$R_{L} = \frac{\sigma_{L} \left[n \left(e, e' \pi^{-} \right) p \right]}{\sigma_{L} \left[p \left(e, e' \pi^{+} \right) n \right]} = \frac{|A_{V} - A_{S}|^{2}}{|A_{V} + A_{S}|^{2}}$$

- Isoscalar backgrounds like b₁(1235) contributions to *t*-channel will dilute the ratio
- ❑ With increasing t, R_T is expected to approach the ratio of quark charges [O. Nachtman, NP B115 (1976) 61]

R_L data consistent with pion-pole dominance R_T data *t*-dependence shows rapid fall-off consistent with *s*-channel quark knockout

 $F_{\pi+}(Q^2)$ in 2015

- □ Far from asymptotic limit
- Consistent with timelike meson form factor data which show no asymptotic behavior up to Q²=18 GeV² [Seth et al, PRL, 110 (2013) 022002]
- Best described by a combination of monopole and dipole forms

Several effective models do a good job describing the data

[Brodsky and de Teramond, PRD 77 (2008) 056007]

[Maris and Tandy, Phys. Rev. C62, 055204 (2000)]

[Nesterenko and Radyushkin, Phys. Lett. B115, 410(1982)]

[A.P. Bakulev et al, Phys. Rev. D70 (2004)]

Insight from data: Pion Transverse Charge Density and the edge of hadrons

 $F_{\pi}(Q^{2}) = A \cdot \frac{1}{(1+B \cdot Q^{2})} + (1-A) \cdot \frac{1}{(1+C \cdot Q^{2})^{2}}$

of a common transverse charge density – common confinement mechanism?

p(b) (fm⁻²)

occupying most of the volume and a meson cloud

dominating only at large impact parameter

Extension to systems containing strangeness: the K^+ Form Factor

Similar to π⁺ form factor, elastic K⁺ scattering from electrons used to measure charged kaon for factor at low Q² [Amendolia et al, PLB 178, 435 (1986)]

❑ Can "kaon cloud" of the proton be used in the same way as the pion to extract kaon form factor via p(e,e'K+)∧? – need to quantify the role of the kaon pole

Unseparated data: pion t-dependence is steeper at low t than for kaons

[T. Horn, Phys. Rev. C 85 (2012) 018202]

□ <u>However</u>, the kaon pole is expected to be strong enough to produce a maximum in σ_L [Kroll/Goloskokov EPJ A47 (2011), 112]

JLab12 GeV essential for measurements at low *t*, which would allow for interpretation of the kaon pole contribution

Kaon Form Factor in 2015

- JLAB experiment E93-018 extracted –t dependence of K⁺ longitudinal cross section near Q²=1 GeV²
- A trial kaon form factor extraction was attempted using a simple Chew-Low extrapolation method

$$\sigma_L \approx \frac{-2tQ^2}{\left(t - m_K^2\right)^2} k(eg_{K\Lambda N})^2 F_K^2(Q^2)$$

- g_{KAN} poorly known
 - Assume form factor follows monopole form
 - Use measurements at $Q^2=0.75$ and 1 GeV² to constrain g_{KAN} and F_K simultaneously
- Extraction shows power of the data, but should probably not yet be interpreted as real extraction of kaon FF

Work on improved extraction ongoing using a model like in pion case [M. Carmignotto]

Kaons in JLab 6 GeV "pion" experiments

□ 6 GeV pion experiments have kaons in their acceptance, e.g. FPI2, SIDIS

- Ebeam = 5.2464 GeV
- e_Theta = 29.43 deg
- e_p = 1.7184 GeV/c
- h_Theta = 13.61 deg
- h_p = 3.3317 GeV/c

Cuts applied to all the plots:

* HMS acceptance: abs(hsdelta) < 8.5 abs(hsxptar) < 0.09 abs(hsyptar) < 0.055 * haero_su > 1.5 * ssshsum > 0.8 (SOS pion rejector)

After applying coincidence time cut:

Q²=2.45 GeV² High ϵ =0.54 8000-9000 events High ϵ =0.27 ~1200 events Parallel kinematics

Recent theory efforts to optimize the kaon VGL model: the "VR" model

- Extends the VGL Regge model by adding a hadronic model that includes DIS process, which dominates the transverse response at moderate and high Q²
 - Residual effect of nucleon resonances in the proton EM TFF taken into account with a resonance-parton transition form factor [T. Vrancx, J. Ryckebusch, J. Nys, Phys. Rev. C 89 (2014) 065202]

Good agreement with unseparated kaon data from Cornell and JLab Hall B

New Pseudoscalar Meson Transition Form Factor Data

...deepened the mystery on how QCD transitions from the soft to the hard regime

Simplest structure for pQCD analysis

- 2009: Babar data showed a continuous rise above the QCD asymptotic limit [Phys. Rev. D 80 (2009) 052002]
- **2012**: BELLE measurements are fully consistent with η, η', η TFF and also with QCD scaling [Phys. Rev. D 86 (2012) 092007]
 - Results also agree with BaBar data for Q²<~9 GeV² [Balakireva, Lucha et al., 12+]
- Q² F(Q²) (GeV²) 0.30 $F_{\gamma^*\gamma\pi^0}(Q^2)$ 0.25 0.20 0.15 0.10 O Belle γ ♣ BaBar [Phys. Rev. D57 (1998) 33] 0.05 $\rightarrow \pi^0$ [Z.Phys. C49 (1991) 401] CELLO • BaBar $\gamma^* \gamma$ \triangle CLEO $\gamma^* \gamma \rightarrow \eta, \eta$ 0.00 10 Q^2 (GeV²)

 $F^{\gamma^*\gamma\pi}(Q^2) = \frac{\sqrt{2}f_{\pi}}{4\pi^2 f^2 + Q^2}$

(1-x)q

π⁰,ṕ

 Statistical analysis shows that one cannot predict the trends observed at Belle and Babar from one another [Stefanis et al. PRD 87 (2013) 094025]

Opposing tendencies in the data cannot be reconciled until additional data on TFFs and other exclusive processes become available, but perhaps no crisis

Implications on the Pion Distribution Amplitude (DA)

- Nonperturbative info about mesons is summarized in the DA comparison with pQCD gives info on the shape, different trends in TFF due to DA endpoint character
 - Asymptotic distribution does not describe all the existing data
 - "Flat-top" DA best agreement with Babar but cannot be reconciled with standard QCD framework based on collinear factorization [Li et al. PRD 80 (2009) 074024]

■ Within standard QCD approach the BMS-like pion DA gives good agreement with global data [A. Bakulev et al., PL B578 (2004), 91; PR D73 (2006) 056002] [Stefanis et al. PRD 87 (2013) 094025]

- Consistent with basic features of the η TFFs implying strong end point suppression
- However, cannot describe the high-Q² tail of the Babar data requiring end point enhancement

Additional pion data on components of the DA needed to understand the underlying mechanism of the large Q² enhancement

QCD factorization – important for both form factors and nucleon structure

- □ Q² dependence of F_{π} follows prediction from pQCD, suggests factorization holds, as perhaps in the TFF
- Different magnitudes imply that factorization does not hold or something is missing in the calculation
 - The form of the pion DA is also important for the calculation of the pQCD prediction
 - Q² dependence of the pion cross section is an essential test of hard-soft factorization required for studies of the nucleon's transverse spatial structure
 - The QCD scaling prediction (σ_L ~ Q⁻⁶) is reasonably consistent with recent 6 GeV JLab π⁺ σ_L data, *but* σ_T does not follow the scaling expectation (σ_T ~Q⁻⁸) and magnitude is large
 [T. Horn et al., Phys. Rev. C 78, 058201 (2008)]

 F_{π} and pion cross section data over a larger range in Q² at 12 GeV can provide essential information about the reaction mechanism – can we learn about nucleon structure using exclusive meson production?

Transverse Contributions may allow for probing a new set of GPDs

- Recent data suggest that transversely polarized photons play an important role in charged and neutral pion electroproduction
 - HALL C π^+ : σ_T magnitude is large even at Q²=2.5 GeV²
 - HERMES π^+ : sin ϕ_s modulation is large

[Airapetian et al, Phys. Lett. B 682, 345 (2010)]

- CLAS: π^0 data show substantial fraction of σ_{TT} in the unseparated cross section

[Bedlinskiy et al, PRL109, (2012) 109; arXiv:1405.0988 (2014)]

Measurements of relative σ_L and σ_T
 contributions to the π cross section to higher
 Q² planned for JLab 12 may shed light on this

E12-07-105 spokespersons: T. Horn, G. Huber

E12-13-010 spokespersons: C. Munoz-Camacho, T. Horn, C. Hyde, R. Paremuzyan, J. Roche; E12-06-101: K. Joo et al.

Considerable theoretical interest related to extraction of GPDs

- o Goloskokov, Kroll, EPJ C65, 137 (2010); EPJ A45, 112 (2011)
- o Kaskulov, Mosel, PRD 81 (2010) 045202
- o Bechler, Mueller, arXiV:0906.2571 (2009)
- Faessler, Gutsche, Lyubovitskij, Obukhovsky, PRC 76 (2007) 025213

300

200

 $Q^2 = 1.15 \text{ GeV}$ x=0.13

300

200

[Ahmad, Goldstein, Liuti, PRD 79 (2009)]

[Goldstein, Gonzalez Hernandez, Liuti, J. Phys. G **39 (2012)** 115001]

A large transverse cross section in π^0 production may allow for accessing helicity flip GPDs

 $Q^{2}=1.61$

JLab: the only facility with capability for reliable F_{π} measurements

- Experiments in Hall C have established the validity of the measurement technique
- CEBAF 10.9 GeV electron beam and SHMS small angle capability and controlled systematics are essential for extending precision measurements to higher Q²
- **D** The JLab 12 GeV π^+ experiments:
 - **E12-06-101**: determine F_{π} up to Q²=6 GeV² in a dedicated experiment
 - Require $t_{min}{<}0.2~GeV^2$ and $\Delta\epsilon{>}0.25$ for L/T separation

E12-06-101 spokespersons: G. Huber, D. Gaskell

- E12-07-105: Primary goal L/T separated cross section data to highest possible Q²~9 GeV² with SHMS/HMS to investigate hard-soft factorization
 - May allow for F_{π} extraction at Q²~9 GeV²

E12-07-105 spokespersons: T. Horn, G. Huber

Higher Q² data will challenge QCD-based models in the most rigorous way and provide a real advance in our understanding of light quark systems

JLab 12 GeV F_{π} data and the Pion valence-quark DA

 Dynamical Chiral Symmetry Breaking (DCSB) is the most important mass generating mechanism for light-quark hadrons

$$S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}$$

□ There is a one-to-one connection between DCSB and the point-wise form of the pion's wave function.

[L. Chang, et al., PRL 111 (2013) 141802; PRL 110 (2013) 1322001]

[I. Cloet, et al., PRL 111 (2013) 092001]

- Dilation of the pion wave function measures the rate at which the dressed-quark approaches the asymptotic bare-parton limit – signature of DCSB
 - Experiments at JLab12 can empirically verify the behavior of *M(p)*, and hence chart the IR limit of QCD

[C.D. Roberts [Prog. Part. Nucl. Phys. 61 (2008) 50]

JLab 12 GeV F_{π} data and theory

2014:

- When comparing the pQCD prediction the pion valence-quark DA has to have at form appropriate to the scale accessible in experiments very different from the result obtained using the asymptotic DA
- Near agreement between the relevant pQCD and DSE-2013
- Monopole fit ~20% above DSE-2013 at Q²~9 GeV²

[L. Chang, et al., PRL 111 (2013) 141802; PRL 110 (2013) 1322001]

□ JLab 12 GeV experiments will map out the kinematic regime where the hard contributions to F_{π} may begin to be dominant ($Q^2 > 8 \text{ GeV}^2$)

Factorization Tests in π^+ Electroproduction

- E12-07-105: primary goal: L/T separated π⁺ cross sections to investigate hard-soft factorization
 - Highest Q² for any L/T separation in π⁺ production
- Factorization essential for reliable interpretation of results from the JLab GPD program at both 6 GeV and 12 GeV

Is the partonic description applicable at JLab? Can we extract GPDs from pion production?

JLab: the only facility with capability for reliable Kaon measurements

- CEBAF 11 GeV electron beam and SHMS small angle capability are essential for the first L/T separated kaon data above the resonance region
- E12-09-011: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions
 - New domain for GPD studies system
 where strangeness is in play E12-09-011spokespersons: T. Horn,
 G. Huber, P. Markowitz
 - 12 GeV data could allow for comparing the observed Q² dependence and magnitude of π⁺ and K⁺ FFs
 [C. Shi, et al., arXiv:1406.3353 (2014)]
 - Dedicated detector built

Together with π^+ these data could make a substantial contribution towards understanding not only the K⁺ production mechanism, but hard exclusive meson production in general

Projected uncertainties for kaon experiment at 12 GeV

23

EIC: Plans for exclusive pion and kaon measurements

□ Spatial structure of *non-perturbative sea*

- Closely related to JLab 6/12 GeV
 - Quark spin/flavor separations
 - Nucleon/meson structure

One of the key measurements in the EIC WP

EIC: kinematic reach of F_{π}

Projections by G. Huber, 2010

Assumptions:

- High ε: 5(e⁻) on 50(p).
- Low ε proton energies as noted.
- Δε~0.22.
- Scattered electron detection over 4π.
- Recoil neutrons detected at θ<0.35° with high efficiency.
- Statistical unc: Δσ_L/ σ_L~5%
- Systematic unc: 6%/ Δε.
- Approximately one year at L=10³⁴.

Excellent potential to study the *QCD transition* nearly over the whole range from the *strong QCD* regime to the *hard QCD* regime

Summary

- Meson form factor measurements play an important role in our understanding of the structure and interactions of hadrons based on the principles of QCD
- Meson form factor measurements in the space-like region
 - π^0 most direct
 - π^+ requires a model to extract the form factor at physical meson mass
 - K^+ requires experimental verification of pole dominance in σ_L
- > π^0 transition form factor data show opposing trends in particular at high Q² inconsistent with perturbative QCD
 - Essential to probe additional channels for a consistent and global understanding
- > π^+ form factor results in both space- and timelike regions seem to indicate scaling with Q² but are in magnitude far from the perturbative prediction

JLab 12 GeV will dramatically improve the π^+/π^0 data set, may also allow for kaon form factor extractions, and may also have significant impact on nucleon structure studies