Transversity in exclusive meson leptoproduction

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg JLab, January 2015

Outline:

- Evidence for strong $\gamma_T^* \to \pi$ transitions
- Transversity in the handbag approach
- Results for pseudoscalar mesons
- Vector mesons
- Summary

An almost model-independent argument

consider pion leptoproduction

sum and difference of single-flip ampl. ($\sim \sqrt{-t'}$ for $t' \rightarrow 0$ by angular mom. conserv.) $\mathcal{M}_{0+\mu+}^{N(U)} = \frac{1}{2} \Big[\mathcal{M}_{0+\mu+} + (-)\mathcal{M}_{0+-\mu+} \Big] \qquad \mu = \pm 1$ $\implies \qquad \mathcal{M}_{0+-+}^{N} = +\mathcal{M}_{0+++}^{N} \qquad \mathcal{M}_{0+-+}^{U} = -\mathcal{M}_{0+++}^{U}$

like a one-particle-exchange of either Natural or Unnatural parity

nucleon helicity flip: $\mathcal{M}_{0--+} \sim t' \qquad \mathcal{M}_{0-++} \sim const$ sum and difference inconvenient (constant may be small - or zero - for dynamical reasons)

Experiment:

Pion photoproduction: cross section exhibits pronounced maximum at t = 0const. cannot be smallPhillips (1967): Regge cuts necessary

Pion leptoproduction

 $\begin{aligned} & \mathsf{HERMES}(09) \\ Q^2 &\simeq 2.5 \,\mathrm{GeV}^2, \ W &= 3.99 \,\mathrm{GeV} \\ & \sin \phi_s \ \text{modulation very large} \\ & \text{does not seem to vanish for } t' \to 0 \\ & A_{UT}^{\sin \phi_s} \propto \mathrm{Im} \Big[\mathcal{M}_{0-,++}^* \mathcal{M}_{0+,0+} \Big] \\ & \text{n-f. ampl. } \mathcal{M}_{0-,++} \ \text{required} \\ & \text{not vanishing in forward direction} \end{aligned}$

assumption:
$$|\mathcal{M}_{0--+}| \ll |\mathcal{M}_{0-++}|, |\mathcal{M}_{0+\pm+}|$$

(ϕ_s orientation of target spin vector)

Transverse cross sections

How can we model $\mathcal{M}_{0-,++}$ in the handbag?

helicity-non-flip GPDs $H, E, \widetilde{H}, \widetilde{E}$

helicity-flip (transv.) GPDs $H_T, E_T, \widetilde{H}_T, \widetilde{E}_T$

 $\gamma^{*}(+)$ $\gamma^{*}(+)$

lead. twist pion wave fct. $\propto q'\cdot\gamma\gamma_5$ (perhaps including ${f k}_\perp$)

 $\mathcal{M}_{0-,++} \propto t'$

 $\mathcal{M}_{0-,++} \propto \text{const}$

(forced by angular momentum conservation)

 $\gamma_T^* \to \pi$ in the handbag approach see Diehlo1, GK10, GK11 $\bar{E}_T \equiv 2\tilde{H}_T + E_T \qquad \mu = \pm 1$

$$\mathcal{M}_{0+\mu+} = e_0 \frac{\sqrt{-t'}}{4m} \int dx \left\{ \left(H_{0+\mu-} - H_{0-\mu+} \right) \left(\bar{E}_T - \xi \tilde{E}_T \right) \right. \\ \left. + \left(H_{0+\mu-} + H_{0-\mu+} \right) \left(\tilde{E}_T - \xi E_T \right) \right\} \\ \mathcal{M}_{0-\mu+} = e_0 \sqrt{1-\xi^2} \int dx \left\{ H_{0-\mu+} \left[H_T + \frac{\xi}{1-\xi^2} \left(\tilde{E}_T - \xi E_T \right) \right] \right. \\ \left. + \left(H_{0+\mu-} - H_{0-\mu+} \right) \frac{t'}{4m^2} \tilde{H}_T \right\}$$

with parity conserv. $(H_{0+\pm -} = -H_{0-\mp +})$: $\mathcal{M}_{0+\pm +} = \mathcal{M}_{0+++}^N \pm \mathcal{M}_{0+++}^U$ time-reversal invariance: \widetilde{E}_T is odd function of ξ N: \overline{E}_T with corrections of order ξ^2 U: order ξ small -t': \mathcal{M}_{0-++} mainly H_T with corrections of order ξ^2 (no definite parity) \mathcal{M}_{0--+} suppressed by t/Q^2 due to H_{0--+}

handbag explains structure of ampl. at least at small ξ and small -t'

PK 6

The twist-3 pion distr. amplitude

projector
$$q\bar{q} \rightarrow \pi$$
 (3-part. $q\bar{q}g$ contr. neglected) Beneke-Feldmann (01)
 $\sim q' \cdot \gamma \gamma_5 \Phi + \mu_{\pi} \gamma_5 \Big[\Phi_P - \imath \sigma_{\mu\nu} (\dots \Phi'_{\sigma} + \dots \Phi_{\sigma} \partial / \partial \mathbf{k}_{\perp\nu}) \Big]$
definition: $\langle \pi^+(q') \mid \bar{d}(x) \gamma_5 u(-x) \mid 0 \rangle = f_{\pi} \mu_{\pi} \int d\tau e^{iq'x\tau} \Phi_P(\tau)$
local limit $x \rightarrow 0$ related to divergency of axial vector current
 $\implies \mu_{\pi} = m_{\pi}^2 / (m_u + m_d) \simeq 2 \text{ GeV}$ at scale 2 GeV (conv. $\int d\tau \Phi_P(\tau) = 1$)

Eq. of motion:
$$\tau \Phi_P = \Phi_\sigma / N_c - \tau \Phi'_\sigma / (2N_c)$$
solution: $\Phi_P = 1$, $\Phi_\sigma = \Phi_{AS} = 6\tau (1 - \tau)$ Braun-Filyanov (90)

$$H^{
m twist-3}_{0-,++}(t=0)
eq 0$$
, Φ_P dominant, Φ_σ contr. $\propto t/Q^2$

in coll. appr.: $H_{0-,++}^{\text{twist}-3}$ singular, in \mathbf{k}_{\perp} factorization (m.p.a.) regular

$$M_{0-++} = e_0 \sqrt{1-\xi^2} \int dx H_{0-++}^{\text{twist}-3} H_T , \qquad M_{0+\pm+} = -e_0 \frac{\sqrt{-t'}}{4m} \int dx H_{0-++}^{\text{twist}-3} \bar{E}_T$$

PK 7

(suppressed by μ_{π}/Q as compared to $L \to L$ amplitudes)

The pion pole

$$\mathcal{M}_{0+0+} = \frac{e_0}{2}\sqrt{1-\xi^2}\langle \widetilde{H} - \frac{\xi^2}{1-\xi^2}\widetilde{E}\rangle \qquad \mathcal{M}_{0-0+} = e_0\frac{\sqrt{-t'}}{4m}\xi\langle \widetilde{E}\rangle$$

leading amplitudes for $Q^2 \to \infty$

$$\begin{split} \widetilde{E}_{\text{pole}}^{u} &= -\widetilde{E}_{\text{pole}}^{d} = \Theta(|x| \leq \xi) \frac{m f_{\pi} g_{\pi NN}}{\sqrt{2} \xi} \frac{F_{\pi NN}(t)}{m_{\pi}^{2} - t} \Phi_{\pi}(\frac{x + \xi}{2\xi}) \\ \implies \frac{d \sigma_{L}^{\text{pole}}}{dt} \sim \frac{-t}{Q^{2}} \Big[\sqrt{2} e_{0} g_{\pi NN} \frac{F_{\pi NN}(t)}{m_{\pi}^{2} - t} Q^{2} F_{\pi}^{\text{pert}}(Q^{2}) \Big]^{2} \\ \text{understimates c.s.(blue l.)} \qquad F_{\pi}^{\text{pert.}} \simeq 0.3 - 0.5 F_{\pi}^{\text{exp.}} \\ (F_{\pi} \text{ measured in } \pi^{+} \text{ electroproduction at Jlab}) \\ \text{Goloskokov-K(09):} \quad F_{\pi}^{\text{pert}} \to F_{\pi}^{\text{exp}} \\ \text{knowledge of the sixties suffices to explain data (small -t)} \\ \text{Bechler-Mueller(09): consider } \alpha_{s} \text{ as a free parameter} \\ \rightarrow \alpha_{s} \simeq 1 \end{split}$$

(Mankiewicz et al (98), Penttinen et al (99))

Parametrization of H_T and \overline{E}_T

 $\begin{array}{ll} H_T: \mbox{ transversity PDFs} & \mbox{ Anselmino et al(09)} \\ \Delta_T q(x) = N_{H_T}^q \sqrt{x}(1-x) \begin{bmatrix} q(x) + \Delta q(x) \end{bmatrix} & \mbox{ DD ansatz} \\ \mbox{ parameters: } \alpha(0) = -0.02, \ \alpha' = 0.45 \ {\rm GeV}^{-2}, \ b = 0, \ N^u = 0.78, \ N^d = -1.01 \\ \mbox{ opposite sign for } u \ \mbox{ and } d \ \mbox{ quarks but } u \ \mbox{ larger than } d \\ \mbox{ Alternative: normalize to lattice moments} \end{array}$

 E_T : only available lattice result for moments: QCDSF-UKQCD(06) Large, same sign and almost same size for u and d quarks \bar{E}_T parameterization: $e_T^a = \bar{N}_T^e e^{b_{eT}t} x^{-\alpha_T^e(t)} (1-x)^{\beta_{eT}^a}$ parameters: $\alpha(0) = 0.3$, $\alpha' = 0.45 \,\text{GeV}^{-2}$, $b = 0.5 \,\text{GeV}^{-2}$, $\bar{N}_T^u = 6.83$, $\bar{N}_T^d = 5.05$ adjusted to lattice results

Burkardt: related to Boer-Mulders fct $\langle \cos(2\phi) \rangle$ in SIDIS – same pattern

 H_T and \overline{E}_T in pion electroproduction

unseparated (longitudinal, transverse) cross sections π^+ : pion pole and $\propto K^u - K^d$ π^0 : no pion pole and $\propto e_u K^u - e_d K^d$

consider u - d signs: \overline{E}_T same, \widetilde{H}, H_T opposite sign $\implies \widetilde{H}$ and H_T large for π^+ , small for π^0 \overline{E}_T small for π^+ , large for π^0

Analysis of CLAS data

 \widetilde{H} from Diehl-K (13) based on DSSV (11)

 H_T, \bar{E}_T as mentioned before (normalized to lattice QCD results)

NEW:

 $\mu_{\pi} = 2.65 \,\mathrm{GeV} \simeq \mu_{\eta}$ according to current quark masses (PDG)

$$\xi = \frac{x_{\rm B}}{2 - x_{\rm B}} \Big[1 + \frac{2}{2 - x_{\rm B}} \frac{m_{\pi}^2}{Q^2} - 2x_{\rm B}^2 \frac{1 - x_{\rm B}}{2 - x_{\rm B}} \frac{m^2}{Q^2} + 2x_{\rm B} \frac{1 - x_{\rm B}}{2 - x_{\rm B}} \frac{t}{Q^2} \Big]$$

reduces $-t_0 = 4m^2 \xi^2 / (1 - \xi^2)$ (see also Braun et al(14))

data: Bedlinsky et al (12)

data CLAS (prel.) unseparated (longitinal, transverse) cross sections

$$\frac{d\sigma(\eta)}{d\sigma(\pi^0)} \simeq \left(\frac{f_\eta}{f_\pi}\right)^2 \frac{1}{3} \left| \frac{e_u \langle K^u \rangle + e_d \langle K^d \rangle}{e_u \langle K^u \rangle - e_d \langle K^d \rangle} \right|^2 \qquad (f_\eta = 1.26 f_\pi)$$

if K^u and K^d have opposite sign: $\eta/\pi^0 \simeq 1$ $(\eta = (\cos\theta_8 - \sqrt{2}\sin\theta_1)\eta_q)$ if K^u and K^d have same sign: $\eta/\pi^0 < 1$ (FKS scheme) $t' \simeq 0 \ \widetilde{H}, H_T$ dominant (see also Eides et al(98) assuming dominance of \widetilde{H} for all t') $t' \neq 0 \ \overline{E}_T$ dominant

Transversity in vector meson leptoproduction

as for pions: $\gamma_T^* \to V_L$ amplitudes, same subprocess amplitude except $\Psi_\pi \to \Psi_V$, i.e. $f_\pi \to f_V$, $\mu_\pi/Q \to m_V/Q$

 $\gamma_T^* \to V_L$ amplitudes somewhat smaller than the $\gamma_T^* \to \pi$ ones but competition with $\langle H \rangle$ (for gluons and quarks) instead with $\langle \widetilde{H} \rangle$ ($|\langle H \rangle| \gg |\langle \widetilde{H} \rangle|$) \implies small transversity effects for vector mesons only seen in some of the SDMEs and in spin asymmetries

examples from Goloskokov-K(13,14) estimates, not fits

Spin density matrix elements

SDME from HERMES(09) $r_{00}^1 \sim -|\langle \bar{E}_T \rangle|^2$ $r_{00}^5 \sim \operatorname{Re}[\langle \bar{E}_T \rangle^* \langle H \rangle]$

Asymmetries

 $\sin(\phi - \phi_s)$ modulations: contr. from leading-twist dominant contr. from transv. GPDs unimportant

data from COMPASS(13)

$$A_{UT}^{\sin(\phi_s)} \sim \operatorname{Im}\left[\langle H_T \rangle^* \langle H \rangle\right]$$

Gluon transversity?

only non-flip subprocess ampl. with gluon helicity-flip $\mathcal{H}_{--,++}$ (helicities ± 1) \implies contribution to $\gamma_T^* \rightarrow V_{-T}$ amplitudes $\mathcal{M}_{-\mu\nu'\mu\nu}$ SDME (HERMES(09), H1(09)): $\gamma_T^* \rightarrow V_{-T}$ ampl. are small, compatible with zero consistent with small gluon transv. GPDs

not in contradiction with large quark transv. GPDs: gluon and quark transv. GPDs evolve independently with scale Hoodbhoy-Ji(98), Belitsky et al(00)

gluon transv. contribution to $\gamma_T^* \rightarrow \gamma_{-T}$ DVCS at NLO Hoodbhoy-Ji(98), Belitsky-Müller (00)

Summary

- clear indications in data (CLAS,HERMES) for strong contributions from $\gamma^*_T \to \pi$ transitions
- within handbag approach $\gamma_T^* \to \pi$ transitions are related to transversity (helicity-flip) GPDs accompanied by a twist-3 pion wave fct.
- H_T and \overline{E}_T constrained by lattice results transversity PDFs from analysis of A_{UT} in SIDIS (Anselmino et al) underestimate H_T
- fit to HERMES π^+ data and interesting predictions for other channels trends and magnitudes of large ξ CLAS data reproduced
- transversity effects also seen in ρ^0 and ω production ($\gamma_T^* \to V_L$ transitions) SDME - \overline{E}_T ; asymmetries - H_T
- only estimates as yet (except π^+); for fits data on π^0 cross section at small ξ required

Results for pion production

Goloskokov-K (10),(11) optimized for small ξ and large W

Strangeness production

would probe \widetilde{H} , \widetilde{E} and H_T for flavor symmetry breaking in sea e.g.

$$K_{p \to \Sigma^0} = -K_v^d + (K^s - K^{\bar{d}}),$$

$$K_{p \to \Lambda} = -\frac{1}{\sqrt{6}} \left[2K_v^u - K_v^d + (2K^{\bar{u}} - K^{\bar{d}} - K^s) \right]$$