Tensor Charge and Transversity using Lattice QCD

David Richards Jefferson Laboratory

JLab, Jan, 2015

Outline

- Transversity and Tensor Charge
 - Anatomy of a Calculation
 - Tensor Charge
 - Higher moments
- Prospects:
 - Flavor-singlet Hadron Structure
 - Calculations at physical light-quark masses
 - Direct calculations of x-dependence
- Outlook

Transversity Distributions in LQCD

- Describe distribution of longitudinal momentum and spin in proton
- Matrix elements of light-cone correlation functions

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}\left(-\frac{\lambda}{2}n\right) n P e^{-ig \int_{\lambda/2}^{\lambda/2} d\alpha \, n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2}n\right)$$

• Expand *O(x)* around light-cone

$$O^{\{\mu_1...\mu_n\}} = \bar{\psi}\sigma^{[\mu\{\nu]}iD^{\mu_1}\dots iD^{\mu_{n-1}\}}\psi$$

Diagonal matrix element

Dominated by lightest state

Anatomy of a Matrix Element Calculation

$$G^{2\text{pt}}(q, t_f - t_i) = \sum_{\vec{x}} e^{-i\vec{q}\cdot\vec{x}} \langle N(t_f, \vec{x})\bar{N}(t_i, 0) \rangle$$

$$G^{3\text{pt}}(q, t_f - t_i, t) = \sum_{\vec{x}} e^{-i\vec{q}\cdot\vec{y}} \langle N(t_f, \vec{x})\mathcal{O}(\vec{y}, t)\bar{N}(t_i, 0) \rangle$$

Resolution of unity – insert states

Tensor Charge

Constantinou et al, arXiv:1311.4670

Simply lowest moment of transversity distributions

... but with disconnected contributions neglected...

Precision Nucleon Matrix Elements

LANL Group: precision calculations of g_S, g_T and g_A.
 Needed for BSM studies of ultra-cold neutron decays

Thomas Jefferson National Accelerator Facility

Comparison of gT

Slide: R. Gupta

Nucleon Charges

e.g. novel interactions probed in ultracold neutron decay

$$H_{eff} \supset G_F \Big[\varepsilon_S \,\overline{u}d \times \overline{e}(1-\gamma_5) v_e + \varepsilon_T \,\overline{u}\sigma_{\mu\nu}d \times \overline{e}\sigma^{\mu\nu}(1-\gamma_5) v_e \Big]$$

$$\mathbf{g}_{\mathrm{S}} = \mathbf{Z}_{\mathrm{S}} \left\langle p \left| \overline{u} d \right| n \right\rangle \quad \mathbf{g}_{\mathrm{T}} = \mathbf{Z}_{\mathrm{T}} \left\langle p \left| \overline{u} \sigma_{\mu\nu} d \right| n \right\rangle$$

Require precise knowledge of QCD nucleon matrix elements, g_A, g_T, g_S

Thomas Jefferson National Accelerator Facility

V, A, S, T, P

Higher Moments

$$\begin{split} \langle\!\langle \overline{q}(0)i\sigma^{\mu\nu}q(0)\rangle\!\rangle &= \langle\!\langle i\sigma^{\mu\nu}\rangle\!\rangle A_{T10}(q^2) + \langle\!\langle \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}\rangle\!\rangle B_{T10}(q^2) + \langle\!\langle \overline{P}^{[\mu}\Delta^{\nu]} \\ \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\rangle\!\rangle \widetilde{A}_{T10}(q^2), \\ \langle\!\langle \overline{q}(0)\mathscr{O}_T^{\mu\nu\mu_1}(0)q(0)\rangle\!\rangle &= \mathscr{A}_{\mu\nu}\mathscr{S}_{\nu\mu_1} \bigg\{ \langle\!\langle i\sigma^{\mu\nu}\overline{P}^{\mu_1}\rangle\!\rangle A_{T20}(q^2) \\ + \langle\!\langle \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\overline{P}^{\mu_1}\rangle\!\rangle \widetilde{A}_{T20}(q^2) + \langle\!\langle \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\Delta^{\mu_1}\rangle\!\rangle \widetilde{B}_{T21}(q^2) \bigg\}. \end{split}$$
Can directly obtain in forward limit

First moment of Transversity

First calculations in chiral regime - only perturbative renormalization

Disconnected diagrams not included

Thomas Jefferson National Accelerator Facility

Origin of Nucleon Spin

$$J^{q} = \frac{1/2 \left(A_{20}^{q}(t=0) + B_{20}^{q}(t-0) \right)}{\Delta \Sigma^{q}/2} = \tilde{A}_{10}^{q}(t=0)/2$$
LHPC, Haegler et al., Phys. Rev. D 77,
$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma^{u+d} + L^{u+d} + J^{g}$$
094502 (2008); D82, 094502 (2010)

Total orbital angular momentum carried by quarks small

Orbital angular momentum carried by individual quark flavors substantial.

Origin of Nucleon Spin - II

Parametrizations of GPDs

Provide phenomenological guidance for GPD's

 CTEQ, Nucleon Form Factors, Regge

Comparison with *Diehl et al,* hep-ph/0408173

Important Role for LQCD

Future Prospects

Flavor-separated and Gluon Contributions

Calculations at Physics Quark Masses

Precision Calculations at physical quark masses

Parton Distributions - I

• x-dependence of distributions related to matrix elements of operators separated on the light-cone

$$\mathcal{O}(x) = \int \frac{d\lambda}{4\pi} e^{i\lambda x} \bar{\psi}\left(-\frac{\lambda}{2}n\right) n P e^{-ig \int_{\lambda/2}^{\lambda/2} d\alpha \, n \cdot A(\alpha n)} \psi\left(\frac{\lambda}{2}n\right)$$

LQCD formulated in Euclidean space to ensure the action is real - importance sampling

Compute instead x-moments of distributions. Hyper cubic symmetry restricts calculation to lowest few moments

Can you recover the distributions?

$$x(u_{v}(x) - d_{v}(x)) = a x^{b} (1 - x)^{c} (1 + \varepsilon \sqrt{x} + \gamma x)$$

Parton Distributions - II

Formulation of LQCD in Euclidean space precludes direct calculation of light-cone correlation functions

 \rightarrow LQCD computes Moments of parton distributions New ideas: calculations of QUASI-distributions in *infinite-momentum frame*

...Flavor Structure

12 GeV; Future EIC Violation of Gottfried sum rule $\bar{d}(x) > \bar{u}(x)$

Summary

- Lattice Calculations of the simplest quantities are now appearing at physical values of the quark masses
- High-precision calculations of local matrix elements relevant for searches for new physics in, e.g. UCN.
 - To directly explore x distributions, there are now a slew of new ideas... Ji et al, Qiu et al.
- Major effort underway in US in generating lattices designed for hadron structure calculations.

TABLE I. Resources, in Tflops-years (TF-yrs), required to calculate the connected diagrams for a complete set of form factors and the lowest three moments of structure functions and generalized parton distributions for the nucleon at the physical pion mass. Lattice Generation is the cost of 10⁴ trajectories, Measurements A reduce the error for g_A to 3 %, and Measurements B reduce the error for $\langle x \rangle$ to 3 %. The actions used are Wilson-clover fermions (W) and Domain-wall fermions (DW); measurements for both use the EigCG algorithm[32], and for the latter we also employ low-mode averaging[31].

$N_s^3 \times N_t$	Action	a _s (fm)	$m_{\pi}L$	$m_{\pi}T$	Lattice Generation	Measurements A	Measurements B
					(TF-yrs)	(TF-yrs)	(TF-yrs)
$64^{3} \times 128$	W	0.11	5.0	10.0	45	120	1800
	DW	0.11	5.2	10.3	700	100	1400
$96^{3} \times 192$	w	0.09	6.1	12.3	380	210	3100
	DW	0.09	5.9	11.8	4000	390	5100
$128^{3} \times 256$	W	0.06	5.4	10.9	1940	340	5000
	DW	0.07	5.9	11.8	20000	1000	13000

"Lattice QCD for Cold Nuclear Physics": USQCD Whitepaper

