Exclusive Meson Production Workshop 22-24 Jan 2015, Jefferson Lab

## **Deeply Virtual Scalar Production**



Charles Hyde Old Dominion University

> ← Mirror Image → Symmetry Breaking



## **Global GPD program**

- GPD program
  - DVCS
  - Deep Virtual Vector Mesons:
    ρ, φ, ω, Κ\*, J/Psi
  - Deep Virtual Pseudo Scalars: pions, kaons, eta
  - What about Scalars?
    - Orphan particle
    - σ, f<sub>0</sub>, etc

### **Deep Virtual Hadron Production (DVHP)**

- Factorization of DVHP does not require isolation of a resonant final state (Deep Virtual Meson Production):
  DVMP ⊂ DVMP
- Consider Deep Virtual  $\pi\pi$  production at  $\pi\pi$  mass threshold
  - Dominated by scalar channel
  - 'sigma'-meson, Higgs particle of nuclear physics
  - Connection to  $\pi\pi$  scattering amplitude

### Example of CLAS data (cf. M.Guidal)

- rho(770)
- $f_0(980)$
- $f_2(1270)$
- Phase space  $\bullet$  $\pi\pi \oplus \Delta\pi$
- $\pi\pi$  at threshold
- (1270) hase space  $\tau \oplus \Delta \pi$   $\tau$  at threshold High Luminosity needed
  - High resolution mass & angular distributions for  $\rightarrow$  J<sup>p</sup> = 0<sup>+</sup>, 1<sup>-</sup>,...
  - $\pi^+ \pi^-$  and  $\pi^0 \pi^0 \rightarrow$ Isospin= 0, 1,...



#### Why Scalars?



- 0<sup>+</sup>0 channel has a gluon Distribution amplitude
  - What is the gluon content of the σ-meson?
- Near  $\pi\pi$  threshold:

"...the dependence of the intensity on  $m_{\pi\pi}$  is related to the effective chiral Lagrangian (EChL) describing **the interaction of soft pions with gravity**. Therefore one can use data on hard exclusive pion pair production to probe this yet **unknown part of the EChL**." (Lehmann-Dronke, Schaefer, Polyakov, Goeke, PRD, **63**, 114001)

### **Experimental Opportunities/Options**

- Deep Virtual  $\pi \pi$  production at large  $Q^2$ ,  $W^2$ : Near  $\pi \pi$  threshold and at small  $t_{Min}$ -t.
- Approximate 2-body kinematics:
  - Both pions ~parallel to q-vector, correlated with (e,e')
  - Performance:
    - Hall A: Super Bigbite Spectrometer (SBS) for π<sup>+</sup> π<sup>-</sup> pair, HRS or BigBite for e<sup>-.</sup>
    - New ECal in SBS for  $\pi^0 \pi^0$  pair? Or thin Shower max in front of HCal?
  - SBS: Luminosity  $\geq 4 \cdot 10^{38} / (\text{cm}^2 \text{sec})$



### Super Bigbite (SBS), Sample parameters

- Acceptance ( $\theta_{SBS} = 15^\circ$ )
  - 70 msr ~ (±5° H) x (±12° V)
  - ≥(±50%) ∆p/p
- Charged particle resolution
  - δp/p = 0.3% + 0.03%GeV/p
  - $\sigma_{\theta} = [0.14 + 1.3 \text{GeV/p}] \text{ mrad}$
- PbGlass Calorimeter for electron arm
  - Operate at 50°C for continuous annealing of Rad damage
- Need to add large (6.5 m<sup>2</sup>) ECal or PreShower detector in front (or instead) of HCalo in SBS.
  - Assume  $15\%/VE_{\gamma}$  and  $\pm 2mr$  (1cm @ 5m) resolution.





### BigBite(e') $\otimes$ SuperBigbite( $\pi\pi$ )

- A single setting
- Mass resolution:
  - Charged Channel:  $\delta(M_{\pi\pi}) \sim 0.002 \text{ GeV}$
  - Neutral Channel:  $\delta(M_{\pi\pi}) \sim 0.09 \text{ GeV}$



**BB**  $\otimes$  **SBS** Acceptance

#### **ππ** Threshold Behavior

- $\pi\pi$  Distribution Amplitude  $\infty C = 1 + b m_{\pi}^{2} + ...$
- Chiral Lagrangian C ~  $1 - [4L_{11} + L_{12} - 2L_{13}]8m_{\pi}^{2}/f_{\pi}^{2}$ 
  - Gravitational coupling of pion field.

$$\mathcal{L}^{(4)} = -iL_9 \operatorname{Tr}[F^{\mu\nu}\partial_{\mu}U\partial_{\nu}U^{\dagger}] + L_{11}R \operatorname{Tr}[\partial_{\mu}U\partial^{\mu}U^{\dagger}] + L_{12}R_{\mu\nu} \operatorname{Tr}[\partial^{\mu}U\partial^{\nu}U^{\dagger}] + L_{13}R \operatorname{Tr}[mU + U^{\dagger}m] + \cdots.$$
(79)

Here  $F^{\mu\nu}$  is the field strength of the photon field,  $R_{\mu\nu}$  and R are the Ricci tensor and the curvature scalar of an external gravitational field, and  $U = \exp(i\pi^a \lambda^a / f_\pi)$  is the non-linear pseudo-Goldstone field. The ellipsis stands for the terms of the EChL that are not relevant for us here. Now we can use the results of the calculations in Refs. [36,37] to express the constant *C* and the near threshold behavior of the functions  $F_{\pi}$ ,  $f_0$ , and  $f_2$  in terms of the constants  $L_i$  in the EChL (79).

# Conclusions

- The scalar  $\pi\pi$  channel of DVHP offers novel physics
  - Gluon DA
  - Gravitational terms in Chiral Lagrangian
- An exploratory program seems feasible with equipment currently under construction in Halls A & B.
- Assistance in developing a cross section code for Monte Carlo simulations would be greatly appreciated.

#### $\pi\pi$ Mass resolution

- $\theta/2 = 0.05 \text{ rad} = \frac{1}{2} \text{ opening angle of pion pair.}$
- $v = 5 \text{ GeV}: p_{\pi} = 2.5 \text{ GeV}$ 
  - $M^2 = 4m_{\pi}^2 + (2p_{\pi}\sin(\theta/2)^2 \sim 4m_{\pi}^2 + (p_{\pi}\theta)^2$
  - M<sup>2</sup> = 0.08 GeV<sup>2</sup> + 0.06 GeV<sup>2</sup> = 0.14 GeV<sup>2</sup>
  - M = 0.38 GeV
- Charged Particle
  - δ(M) ~ M δp/p ⊕ p δθ
  - $\delta(M) = 0.001 \text{ GeV} \oplus 0.002 \text{ GeV}$
- Neutral
  - $\delta p/p = 15\%/sqrt(p)$
  - $\delta\theta = 1$  cm/5m = 2e-3
  - δ(M)= (0.4)(0.1) + (2.5)(0.002) = 0.09 GeV