

Exclusive Meson Production

with 160GeV polarized muon beams at COMPASS

Nicole d'Hose (CEA-Saclay) On behalf of the COMPASS Collaboration Jlab workshop, 22 January 2015

Hard Exclusive Meson Production (HEMP):

Vector meson production $(\rho, \omega, \phi, J/\psi...) \Rightarrow H \& E$ Pseudo-scalar production $(\pi, \eta...) \Rightarrow H \& E$

$$\begin{split} & \text{K}\rho^{0} = 1/\sqrt{2} \; (2/3 \; \text{K}^{\text{u}} + 1/3 \; \text{K}^{\text{d}} + 3/8 \; \text{K}^{\text{g}}) \\ & \text{K}\omega \; = 1/\sqrt{2} \; (2/3 \; \text{K}^{\text{u}} - 1/3 \; \text{K}^{\text{d}} + 1/8 \; \text{K}^{\text{g}}) \\ & \text{K}\varphi \; = \; -1/3 \; \text{K}^{\text{s}} \; - 1/8 \; \text{K}^{\text{g}} \end{split}$$

K is any of the GPDs H, E, H_T , \overline{E}_T

Exclusive ρ^{0} production with transversely polarized target $\left[\frac{\alpha_{\rm em}}{8\pi^3}\frac{y^2}{1-\varepsilon}\frac{1-x_B}{x_B}\frac{1}{Q^2}\right]^{-1}\frac{{\rm d}\sigma}{{\rm d}x_{Bj}{\rm d}Q^2{\rm d}t{\rm d}\phi{\rm d}\phi_s}$ $= \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--} \right) + \varepsilon \sigma_{00}^{++} - \varepsilon \cos(2\phi) \operatorname{Re} \sigma_{+-}^{++} - \sqrt{\varepsilon(1+\varepsilon)} \cos \phi \operatorname{Re} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--} \right) \right)$ $-P_{\ell}\sqrt{\varepsilon(1-\varepsilon)}\sin\phi \operatorname{Im}(\sigma_{+0}^{++}+\sigma_{+0}^{--})$ transv. $-S_T \left| \frac{\sin(\phi - \phi_S)}{\operatorname{Im}(\sigma_{++}^{+-}) + \varepsilon \sigma_{00}^{+-}} \right| + \frac{\varepsilon}{2} \frac{\sin(\phi + \phi_S)}{2} \operatorname{Im} \sigma_{+-}^{+-} + \frac{\varepsilon}{2} \frac{\sin(3\phi - \phi_S)}{2} \operatorname{Im} \sigma_{+-}^{-+}$ polar. target + $\sqrt{\varepsilon(1+\varepsilon)}\sin\phi_{S}\ln\sigma_{+0}^{+-}$ + $\sqrt{\varepsilon(1+\varepsilon)}\sin(2\phi-\phi_{S})\ln\sigma_{+0}^{-+}$ transv. $+S_T P_\ell \left| \sqrt{1-\varepsilon^2} \cos(\phi-\phi_S) \operatorname{Re} \sigma_{++}^{+-} \right|$ polar. $-\sqrt{\varepsilon(1-\varepsilon)}\cos\phi_{S}\operatorname{Re}\sigma_{+0}^{+-}-\sqrt{\varepsilon(1-\varepsilon)}\cos(2\phi-\phi_{S})\operatorname{Re}\sigma_{+0}^{-+}$ target + long. Polar. interference terms: beam $\gamma^* \rightarrow \rho^0$ dominant (LL) for nucleon helicity for photon helicity $\gamma^*_{T} \rightarrow \rho^0_{I}$ (TL) with

GPDs in exclusive ρ^0 production

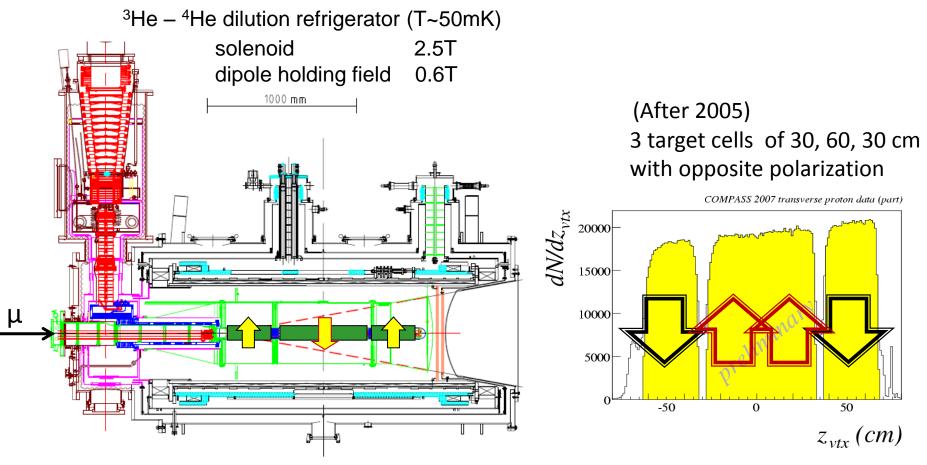
Chiral-even
$$H \nleftrightarrow q$$

 $\gamma^*_{L} p^{\uparrow} \rightarrow \rho^0_{L} p^{\uparrow} L=0$
 $\gamma^*_{L} p^{\uparrow} \rightarrow \rho^0_{L} p^{\downarrow} L=1$
 $j_{1}: 2J^q = \int x (H^q(x,\xi_0) + E^q(x,\xi_0)) dx$
Chiral-odd
 $H_T \nleftrightarrow h_1 \bigoplus - \bigoplus Transversity: quark spin \& nucleon transv. spin \\ \gamma^*_{T} p^{\uparrow} \rightarrow \rho^0_{L} p^{\downarrow} L=0$
 $\overline{E}_T = 2\widetilde{H}_T + E_T \bigstar \overline{h}_1 \bigoplus - \bigoplus Boer-Mulders: quark k_T \& quark transverse spin \\ \gamma^*_{T} p^{\uparrow} \rightarrow \rho^0_{L} p^{\uparrow} L=1$

The COMPASS experiment

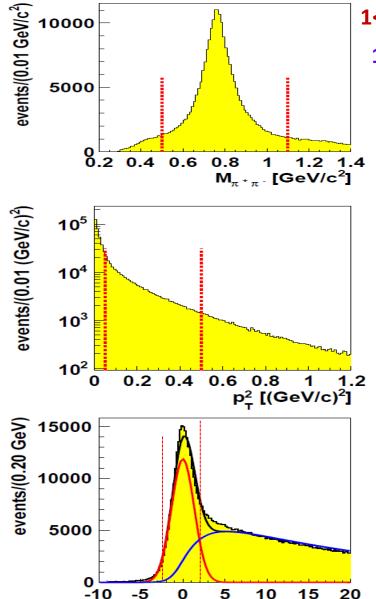
μ + μ beams with LH2 Target

Tests in // of spectroscopy and pion polarisability
2008-9 with a 1m Recoil Proton Detector
2012 with a 4m Recoil Proton Detector (CAMERA)


2015 Drell-Yan program for TMD

2016-17 DVCS and HEMP program for GPD with LH2 target and CAMERA

> 2020 DVCS and HEMP program for GPD with polarized target and recoil detection?


The COMPASS polarized target

solid state target operated in frozen spin mode

	d (⁶ LiD)	р (NH ₃)
polarization	50%	80%
dilution factor for excl. ρ^0	45%	25%

Selection of Exclusive ρ° Production: $\mu p \rightarrow \mu' \rho^{\circ} p'$

E_{miss} [GeV]

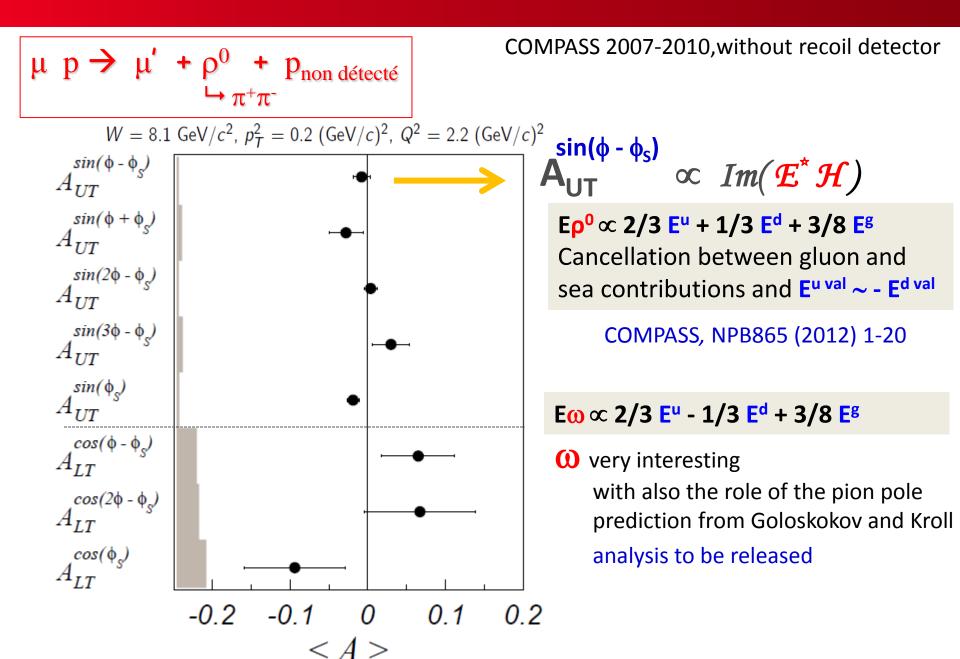
$1 < Q^2 < 10 \text{ GeV}^2$ 0.1 < y < 0.9 W>4 GeV E_{ρ} > 15 GeV

1- Assuming both hadrons are \pi 0.5 < M_{$\pi\pi$} **< 1.1 GeV** To maximize the purity of the sample of ρ° / non resonant $\pi^{+}\pi^{-}$

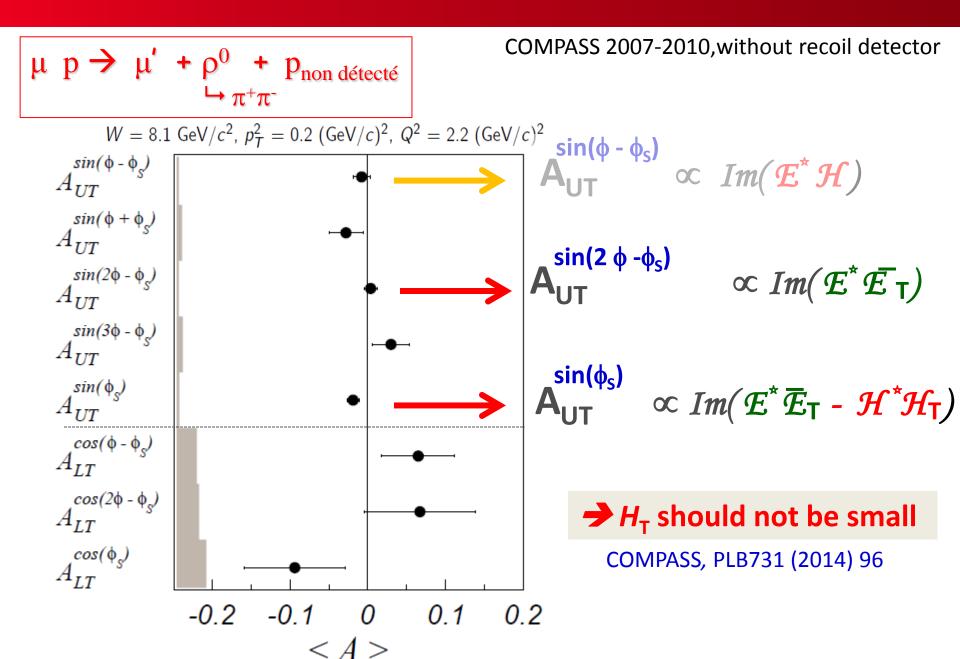
2- Incoherent production on quasi-free protons in NH₃ polarized target

 $0.05 < p_t^2 < 0.5 \text{ GeV}^2$

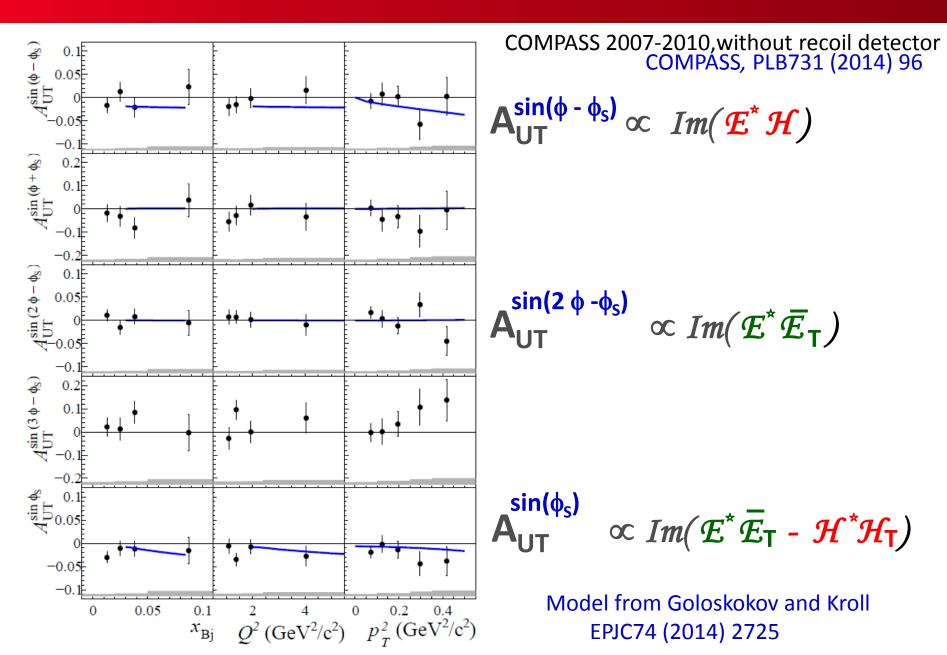
Contamination of about a 5% coherent production


3- Exclusivity of the reaction

$$\begin{split} E_{\rm miss} &= \frac{M_X^2 - M_P^2}{2 \cdot M_P} = E_{\gamma^*} - E_{\rho^0} + t/(2 \cdot M_P) \\ \text{-2.5 < $E_{\rm miss}$ < 2.5 GeV} \end{split}$$


Diffractive dissociation ~12% Does not change the asymmetry (confirmed by HERA)

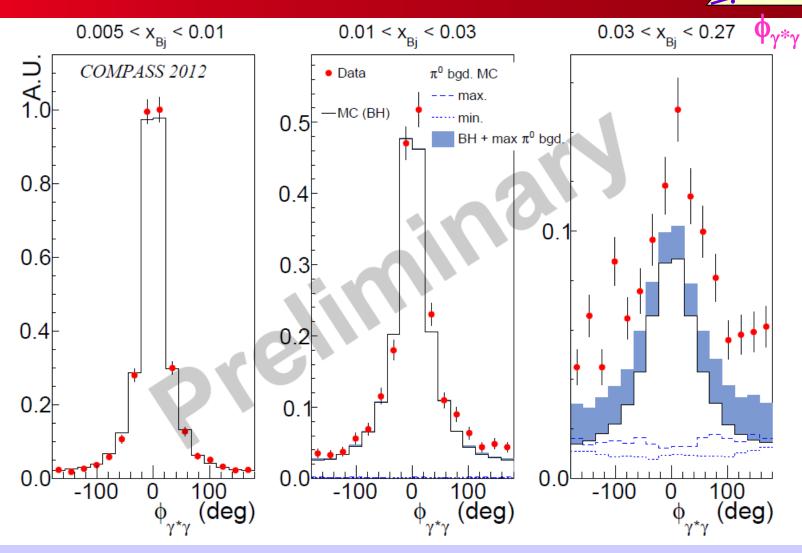
Background correction in every bin in: x_{Bj} , Q^2 , p_T^2 , $\Phi - \Phi_s$ and cell state and polar. state


exclusive ρ^0 production with Transv. Polar. Target

exclusive ρ^0 production with Transv. Polar. Target

exclusive ρ^0 production with Transv. Polar. Target

10

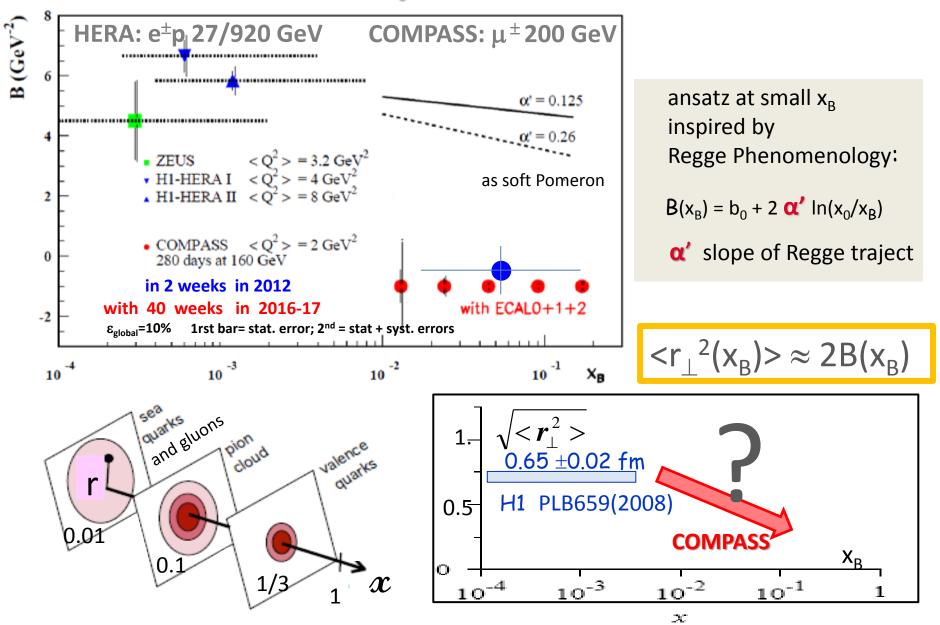

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

eginning in 2012 and then in 2016 7

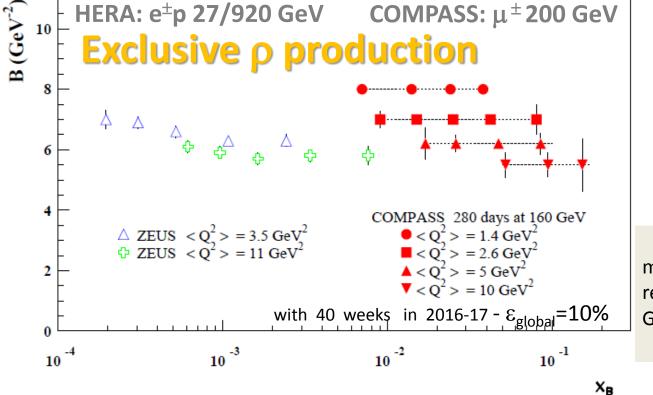
ECALO

ECAL2

exclusive single photon production (2012 data)

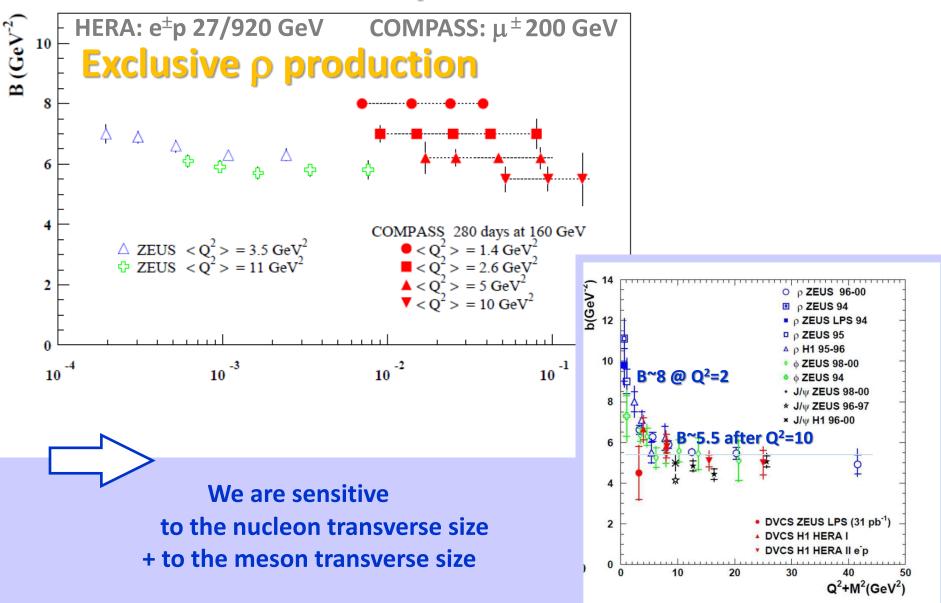


Dominant Bethe-Heitler process clearly visible at small x_{Bi}


✓ π^0 background (from SIDIS and **excl.** π^0) at large x_{B_i} estimated in blue

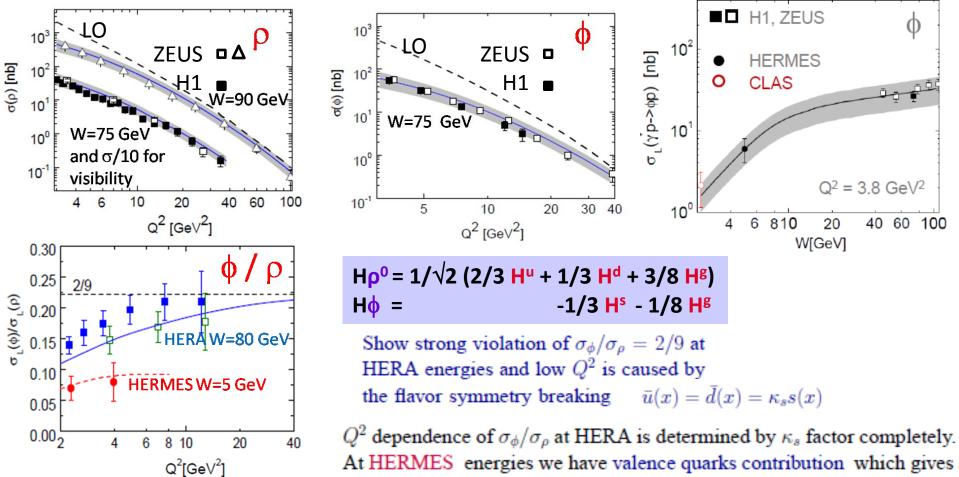
✓ The data at large xBj show an excess compared to BH+Background (for pure DVCS)

Transverse imaging at COMPASS $d\sigma^{DVCS}/dt \sim exp(-B|t|)$



Transverse imaging at COMPASS $d\sigma^{excl. \rho}/dt \sim exp(-B|t|)$

model developed by Sandacz renormalised according Goloskokov and Kroll prediction


Transverse imaging at COMPASS $d\sigma^{excl. \rho}/dt \sim exp(-B|t|)$

Predictions for mesons from GK model

16

GK model for GPDs (determined for mesons) including dominant (longitudinal) $\gamma_{L}^{*} \mathbf{p} \rightarrow \rho_{L} \mathbf{p}$ and transv. polar. $\gamma_{T}^{*} \mathbf{p} \rightarrow \rho_{T} \mathbf{p}$ quark and gluon contributions and beyong leading twist

additional suppression of $\sigma_{\phi}/\sigma_{\rho}$ ratio.

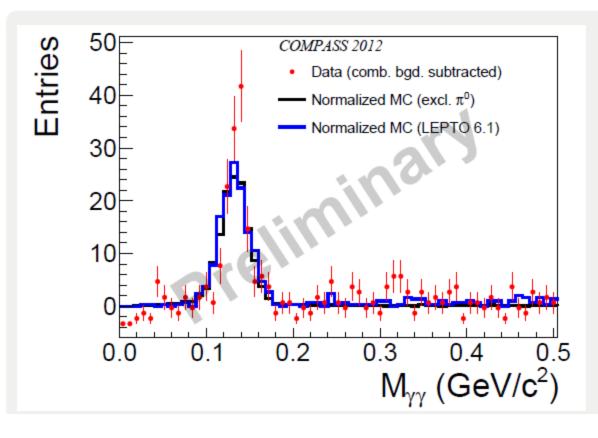
Outlook

ρ ⁰ production has been well studied with Polarized target Li ⁶ D (deuteron) & NH ₃ (proton)	
- $\sigma_{_L}$ / $\sigma_{_T}$ and a few SDME released but not published		
- A _{LL} on deuteron (2002-3 data) EPC52 (2007) 455		
- A _{ut} on deuteron (2003-4 data) and proton (2007 data) NPB865 (2012) 1		
- A _{UT} and A _{LT} on proton (2007-10 data)		
study of the 8 asymetries PLB731 (2014) 96	N evts	
the release for the 8 asymmetries is being finalized	~ N/30	
igoplus a few analyses have been done (not released)	~ N/10	

 J/ψ very few analyses done mainly at Q² > 0.7 GeV² (not released) ~ N/100

40 weeks in 2016 -2017 (and 4 weeks in 2012) with LH2 target and with recoil detection

- acceptance and efficiencies will be determined with a great precision for DVCS
- use of μ + flux and μ flux (2.6 smaller)
- N_{proton} in 1.2m long NH_3 target / N_{proton} in 2.5m long LH2 = 1.7
- very good exclusivity (t varying from 0.07 to 1 or 2 GeV^2)


 $ρ^0$ (a very good reference) $ω \phi J/ψ$ to be studied (dσ/dt, SDME) $π^0$ studied with DVCS but no L/T separation (ε~ 0.98 at 160 GeV)

π^0 Background Estimation

 π^0 s are one of the main backgroud sources for exclusive photon events

Two possible cases:

- visible (both γ detected, easy to reject)
- invisible (one γ ``lost", only estimated with MC)

 $M_{\gamma_{excl}\gamma_{bgd}}$ distribution (``Visible'' pi⁰)

(combinating the exclusive γ candidate to all additional low-energy γ 's)

LEPTO and HEPGEN/ π^0 MC normalized to $M_{\gamma_{excl}\gamma_{bgd}}$ peak from real data