GPDs from meson leptoproduction

P. Kroll
Universitaet Wuppertal
JLab, January 2015

Outline:

- The handbag, GPDs and power corrections
- Analysis of meson leptoproduction
- DVCS
- The GPD E and Ji's sum rule
- $\quad \omega$ production
- Summary

Can we apply the asymp. fact. formula ?

rigorous proofs of collinear factorization in generalized Bjorken regime:
for $\gamma_{L}^{*} \rightarrow V_{L}(P)$ and $\gamma_{T}^{*} \rightarrow \gamma_{T}$ amplitudes
$\mathcal{K}=\int d x K(x, \xi, t) \mathcal{H}\left(x, \xi, Q^{2}\right)$

$$
\left(Q^{2}, W \rightarrow \infty, x_{\mathrm{B}} \text { fixed }\right)
$$

Radyushkin, Collins et al, Ji et al
possible power corrections not under control \Longrightarrow unknown at which Q^{2} asymptotic result can be applied
e.g. ρ^{0} production: $\sigma_{L} / \sigma_{T} \propto Q^{2}$ experiment: $\simeq 2$ for $Q^{2} \leq 10 \mathrm{GeV}^{2}$ $\gamma_{T}^{*} \rightarrow V_{T}$ transitions substantial
$\sigma_{L} \propto 1 / Q^{6}$ at fixed x_{B} modified by $l n^{n}\left(Q^{2}\right) \quad$ experiment:

Two concepts to solve problem with $\gamma_{L}^{*} \rightarrow V_{L}$ ampl.:

 at small x_{B} (i.e. small ξ): only GPD H relevantMueller et al $(11,13)$: absorb effects into GPDs \Longrightarrow strong $\ln ^{n}\left(Q^{2}\right)$ from evolution of GPDs only shown for HERA data (i.e. at $W \simeq 90 \mathrm{GeV}$) with $H_{g \text {,sea }}$

- can this be extended to lower W ?
fits to only DVCS or to DVCS+DVMP data from HERA lead to different GPDs

Goloskokov-K (06): take into account transverse size of meson, i.e. power corrections $1 / Q^{n}$ to subprocess $\gamma_{L}^{*} q(g) \rightarrow V_{L} q(g)$

H for gluon, sea and valence
$W \gtrsim 4 \mathrm{GeV} \quad Q^{2}=4 \mathrm{GeV}^{2}$
gluon + sea, gluon
valence + (gluon + sea)-valence
interference

The subprocess amplitude for DVMP

mod. pert. approach - quark trans. momenta in subprocess (emission and absorption of partons from proton collinear to proton momenta) transverse separation of color sources \Longrightarrow gluon radiation

$$
\text { (lead. twist) for } Q^{2} \rightarrow \infty \quad \text { e.g. } \propto 1 /\left[k_{\perp}^{2}+\tau(\bar{x}+\xi) Q^{2} /(2 \xi)\right] \Rightarrow \text { Bessel fct }
$$

Sudakov factor generates series of power corr. $\sim\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right)^{n}$ (from region of soft quark momenta $\tau, \bar{\tau} \rightarrow 0$)
from intrinsic k_{\perp} in wave fct: series $\sim\left(\left\langle b^{2}\right\rangle / Q^{2}\right)^{n}($ from all $\tau)$

$$
\begin{aligned}
& \text { Sudakov factor Sterman et al(93) } \\
& S\left(\tau, \mathbf{b}, Q^{2}\right) \propto \ln \frac{\ln \left(\tau Q / \sqrt{2} \Lambda_{\mathrm{QCD}}\right)}{-\ln \left(b \Lambda_{\mathrm{QCD}}\right)}+\mathrm{NLL} \\
& \text { resummed gluon radiation to NLL } \Rightarrow \exp [-S] \\
& \text { provides sharp cut-off at } b=1 / \Lambda_{\mathrm{QCD}} \\
& \mathcal{H}_{0 \lambda, 0 \lambda}^{M}=\int d \tau d^{2} b \hat{\Psi}_{M}(\tau,-\vec{b}) e^{-S} \hat{\mathcal{F}}_{0 \lambda, 0 \lambda}\left(\bar{x}, \xi, \tau, Q^{2}, \vec{b}\right) \\
& \hat{\Psi}_{M} \sim \exp \left[\tau \bar{\tau} b^{2} / 4 a_{M}^{2}\right] \text { LC wave fct of meson } \\
& \hat{\mathcal{F}} \mathrm{FT} \text { of hard scattering kernel }
\end{aligned}
$$

Parametrizing the GPDs

double distribution representation
Mueller et al (94), Radyushkin (99)
$K^{i}(x, \xi, t)=\int_{-1}^{1} d \rho \int_{-1+|\rho|}^{1-|\rho|} d \eta \delta(\rho+\xi \eta-x) K^{i}(\rho, \xi=0, t) w_{i}(\rho, \eta)+D_{i} \Theta\left(\xi^{2}-\bar{x}^{2}\right)$
weight fct $w_{i}(\rho, \eta) \sim\left[(1-|\rho|)^{2}-\eta^{2}\right]^{n_{i}} \quad\left(n_{g}=n_{\text {sea }}=2, n_{\text {val }}=1\right.$, generates ξ dep.)
zero-skewness GPD $K^{i}(\rho, \xi=0, t)=k^{i}(\rho) \exp \left[\left(b_{k i}-\alpha_{k i}^{\prime} \ln (\rho)\right) t\right]$

$$
k=q, \Delta q, \delta^{q} \text { for } H, \widetilde{H}, H_{T} \text { or } N_{k i} \rho^{-\alpha_{k i}(0)}(1-\rho)^{\beta_{k i}} \text { for } E, \widetilde{E}, \bar{E}_{T}
$$

Regge-like t dep. (for small $-t$ reasonable appr.), $\quad D$-term neglected
advantage: polynomiality and reduction formulas automatically satisfied positivity bounds respected (checked numerically)
sum rules for nucleon form factors respected

Ansätze for zero-skewness GPDs

simplest ansatz:
e.g. $H^{q}(x, \xi=0, t)=c_{q} q(x) F_{1}^{q}(t)$ respects reduction formula and sum rules $\int d x H^{q}(x, \xi=0, t)=F_{1}^{q}(t)$

Burkhardt(00,03): $q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b} \boldsymbol{\Delta}_{\perp}} H^{q}\left(x, \xi=0, t=-\Delta_{\perp}^{2}\right)$ (density interpretation) \mathbf{b}_{\perp} : transverse distance between struck parton and hadron's center of momentum $\sum x_{i} \mathbf{b}_{\perp i}=0$; partons with large (small) x_{i} must (can) have small (large) $\mathbf{b}_{\perp i}$

improvement: Regge-like ansatz (frequently used now)

$$
H^{q}(x, \xi=0, t)=q(x) e^{t f_{q}(x)} \quad f_{q}(x)=B_{q}-\alpha_{q}^{\prime} \ln (x)
$$

at small $x: q \sim x^{-\alpha_{q}(0)} \Longrightarrow H^{q} \sim x^{-\alpha_{q}(t)} \quad\left(\alpha_{q}(t)=\alpha_{q}(0)+\alpha_{q}^{\prime} t\right)$ standard Regge trajectory - $H^{q} \sim 1 / \sqrt{x}$ at $t \simeq 0 \quad$ (fact. ansatz for all t)

$$
\sim \sqrt{x} \text { at } t \simeq-1 \mathrm{GeV}^{2}
$$

FT: $q\left(x, \mathbf{b}_{\perp}\right)=\frac{1}{4 \pi} \frac{q(x)}{f_{q}(x)} \exp \left[-b_{\perp}^{2} / 4 f_{q}(x)\right] \quad$ and $\quad<b_{\perp}^{2}>_{x}^{q}=4 f_{q}(x)$ distance between active parton and cluster of spectators (rough estimate of proton radius)

$$
\begin{aligned}
& d_{q}(x)=\frac{\sqrt{<b_{\perp}^{2}>_{x}^{q}}}{1-x} \sim 1 /(1-x) \\
& \text { for } x \rightarrow 1 \text { ! }
\end{aligned}
$$

Regge-like ansatz only suitable at small x, i.e. at small $-t$ unphysical at large x
further improvement:
DFJK04, Diehl-K(13)
used in analysis of form factors for proton and neutron at $\xi=0$

$$
F_{1}^{p(n)}=e_{u(d)} \int_{-1}^{1} d x H_{i}^{u}(x, \xi=0, t)+e_{d(u)} \int_{-1}^{1} d x H_{i}^{d}(x, \xi=0, t)
$$

Pauli form factor

$$
H \rightarrow E
$$

normalization fixed from $\kappa_{q}=\int_{0}^{1} d x E_{v}^{q}(x, \xi=0, t=0)$
profile fct: $f_{q}=\left(B_{q}-\alpha_{q}^{\prime} \ln x\right)(1-x)^{3}+A_{q} x(1-x)^{2}$

$$
d_{q}(x)=\frac{2 \sqrt{f_{q}(x)}}{1-x} \rightarrow 2 \sqrt{A_{q}}
$$

for $x \rightarrow 1$
Regge-like profile fct can (only) be used at small $x($ small $-t)$

What has been done?

- analysis of FF (DFJK04, update: Diehl-K 1302.4604)
using CTEQ6 (ABM11) PDFs, fixes $H, E,(\widetilde{H})$ for valence quarks
- analysis of $d \sigma_{L} / d t$ for ρ^{0} and ϕ production Goloskokov-K, hep-ph/0611290 data from H1, ZEUS, E665, HERMES for $Q^{2} \gtrsim 3 \mathrm{GeV}^{2}$ and $W \gtrsim 4 \mathrm{GeV}\left(\xi \lesssim 0.1,-t \lesssim 0.5 \mathrm{GeV}^{2}\right)$ fixes H for sea quarks and gluons for given $H^{\text {val }}$ (E negligible, others don't contr.) update with ABM11 required
- analysis of π^{+}production, Goloskokov-K, 0906.0460 $d \sigma / d t$ and $A_{U T}$ data from HERMES ($W \simeq 4 \mathrm{GeV}, Q^{2} \simeq 2-5 \mathrm{GeV}^{2}$) evidence for strong contr. from $\gamma_{T}^{*}\left(H_{T}\right)$ fixes \widetilde{H}, pion pole and $H_{T} \quad$ (no clear signal for $\widetilde{E}_{\text {non-pole }}$)
- SDME and $A_{U T}$ for ρ^{0} production HERMES, π^{0} cross section and η / π^{0} cross section ratio from CLAS (large skewness!), and lattice QCD QCDSF and UKQCD, hep-lat/0612032 hints at strong contributions from $\bar{E}_{T}=2 \widetilde{H}_{T}+E_{T}$

Results on DVMP

long. cross sections fix H for gluons and sea quarks for given $H_{\text {val }} \quad$ GK(06)

left: $W=5,10 \mathrm{GeV}$
HERMES, E665
right: H1, ZEUS $W=75,90 \mathrm{GeV}$
dashed: collinear

left: $Q^{2}=3.8 \mathrm{GeV}^{2}$ CLAS, HERMES, H1, ZEUS
right: $\sigma_{L}(\phi) / \sigma_{L}(\rho)$
$\left\langle H^{s}\right\rangle<\left\langle H^{\bar{u}}\right\rangle$
(and $a_{\phi} \neq a_{\rho}$)

Why restriction to small skewness data?

at $Q^{2}=4 \mathrm{GeV}^{2}$
data: E665, HERMES,
CORNELL, H1, ZEUS, CLAS
breakdown of handbag physics?

Our GPDs may be used in large skewness region but success is not guaranteed

Applications

exploiting universality: our set of GPDs allows for parameter free calculations of other hard exclusive reactions (except of possible wave fct effects)

- $\nu_{l} p \rightarrow l P p \quad$ Kopeliovich et al (13)

V-A structure leads to different combinations of GPDs no data

- timelike DVCS

Pire et al (13)
no data

- $\gamma^{*} p \rightarrow \omega p$

Goloskokov-K(14)
compared with SDMEs from HERMES(14) (asymmetries will come) prominent role of pion pole

- DVCS K-Moutarde-Sabatie(13)
compared to data from Jlab, HERMES, H1, ZEUS good agreement with small skewness data, less good with Jlab data

DVCS

collinear (leading-twist) calculation to LO accuracy for consistency
NLO: gluon GPDs contribute as well

$$
\begin{aligned}
& d \sigma(l p \rightarrow l p \gamma)=d \sigma_{B H}+d \sigma_{I}+d \sigma_{D V C S} \\
& d \sigma_{i} \propto \sum_{n=0}^{3}\left[c_{n}^{i} \cos (n \phi)+s_{n}^{i} \sin (n \phi)\right]
\end{aligned}
$$

DVCS convolutions

$$
\langle K\rangle=e_{u}^{2}\left\langle K^{u}\right\rangle+e_{d}^{2}\left\langle K^{d}\right\rangle+e_{s}^{2}\left\langle K^{s}\right\rangle
$$

most of the DVCS observables can be evaluated from H
(ϕ azimuthal angle between lepton and hadron plane)

DVCS at HERA

data from ZEUS, H1

K-Moutarde-Sabatie(13)

E for gluons and sea quarks

E for valence quarks from FF analysis
Diehl-K(13)
Teryaev(99): sum rule (Ji's s.r. and momentum s.r. of DIS) at $t=\xi=0$

$$
\int_{0}^{1} d x x e_{g}(x)=e_{20}^{g}=-\sum e_{20}^{a_{v}}-2 \sum e_{20}^{\bar{a}}
$$

valence term very small
\Rightarrow 2nd moments of gluon and sea quarks cancel each other almost completely (holds approximately for other moments too provided GPDs don't have nodes)
positivity bound for FTs forbids large sea \Longrightarrow gluon small too $\frac{b_{\perp}^{2}}{m^{2}}\left(\frac{\partial e_{s}\left(x, b_{\perp}\right)}{\partial b_{\perp}^{2}}\right)^{2} \leq s^{2}\left(x, b_{\perp}\right)-\Delta s^{2}\left(x, b_{\perp}\right)$
parameterization as described: $\beta_{e}^{s}=7, \beta_{e}^{g}=6$ Regge-like parameters as for H $e_{i}=N_{i} x^{-\alpha_{g}(0)}(1-x)^{\beta_{i}}$ flavor symm. sea for E assumed
N_{s} fixed by saturating bound $\left(N_{s}= \pm 0.155\right), N_{g}$ from sum rules

$$
\left(e_{20}^{s}= \pm 0.026\right)
$$

for $\xi \neq 0$ input to double distribution ansatz

$A_{U T}^{\sin \left(\phi-\phi_{s}\right)}$ for ρ^{0} production

data:
theor. result: Goloskokov-K(09)

COMPASS(12)

$$
A_{U T}^{\sin \left(\phi-\phi_{s}\right)} \sim \operatorname{Im}\left[\langle E\rangle^{*}\langle H\rangle\right]
$$

gluon and sea contr. from E cancel to a large extent dominated by valence quark contr. from E (ϕ_{s} orientation of target spin vector)

Transverse target spin asymmetry in DVCS

$A_{U T, D V C S}^{\sin \left(\phi-\phi_{s}\right)} \sim \operatorname{Im}\left[\langle E\rangle^{*}\langle H\rangle\right]$
no cancellation between
sea and gluon
$\Rightarrow\left\langle E^{\text {sea }}\right\rangle$ seen

data: HERMES(08)
$\left\langle Q^{2}\right\rangle \simeq 2.5 \mathrm{GeV}^{2}$ $\left\langle x_{\mathrm{B}}\right\rangle \simeq 0.09$
theory: $\mathrm{KMS}(12)$
$\left\langle E^{g}\right\rangle \geq 0$ Koempel et al(11) transverse target polarisation in J / Ψ photo- and electroproduction, dominated by gluonic GPDs

Application: Angular momenta of partons

$$
J^{a}=\frac{1}{2}\left[q_{20}^{a}+e_{20}^{a}\right] \quad J^{g}=\frac{1}{2}\left[g_{20}+e_{20}^{g}\right] \quad(\xi=t=0)
$$

q_{20}^{a}, g_{20} from ABM11 (NLO) PDFs
$(a=u, d, s, \bar{u}, \bar{d}, \bar{s})$
$e_{20}^{a_{v}}$ from form factor analysis Diehl-K. (13):
$e_{20}^{s} \simeq 0 \ldots-0.026$ from analysis of $A_{U T}$ in DVCS and pos. bound e_{20}^{g} from sum rule for e_{20}

$$
\begin{aligned}
J^{u+\bar{u}} & =0.261 \ldots 0.235 ; & J^{d+\bar{d}}=0.035 \ldots 0.009 \\
J^{g} & =0.187 \ldots 0.265 ; & J^{s+\bar{s}}=0.017 \ldots-0.009
\end{aligned}
$$

J^{i} quoted at scale $2 \mathrm{GeV} \quad \sum J^{i}=1 / 2 \quad$ (spin of the proton)

$$
\text { need better determ. of } E^{s} \text { (smaller errors of } A_{U T} \text { in DVCS) }
$$

Comparison with other results

from DVCS exp:
CLAS $J^{d+\bar{d}}+J^{u+\bar{u}} / 5=0.18 \pm 0.14 \quad$ HERMES $J^{d+\bar{d}} / 2.9+J^{u+\bar{u}}=0.42 \pm 0.22$
strongly model dependent
assumption: $e_{q_{v}}(x) \sim q_{v}(x)$
in conflict with FF analysis and with pert.QCD Yuan(04)

ω production

important ingredient: pion pole (as for π^{+}production)

$$
\widetilde{E}_{\mathrm{pole}}^{u}=\widetilde{E}_{\mathrm{pole}}^{d}=\Theta(|x| \leq \xi) \frac{m f_{\pi} g_{\pi N N}}{\sqrt{2} \xi} \frac{F_{\pi N N}(t)}{m_{\pi}^{2}-t} \Phi_{\pi}\left(\frac{x+\xi}{2 \xi}\right)
$$

underestimates this contribution - treat pole as OPE Goloskokov-K(14)

$$
\begin{aligned}
& \qquad\langle\omega| j_{\kappa}^{\mathrm{el}}(0)|\pi\rangle=e_{0} g_{\gamma^{*} \pi \omega}\left(Q^{2}, t\right) \varepsilon\left(\kappa, q, \epsilon_{\omega}, q^{\prime}\right) \\
& \text { large } Q^{2}, \text { small }-t: g_{\gamma^{*} \pi \omega}\left(Q^{2}, t\right) \simeq g_{\pi \omega}\left(Q^{2}\right) \\
& \text { dominant } T \rightarrow T \text { transitions } \\
& \text { (suppressed by } 1 / Q \text { as compared to } L \rightarrow L \text {) } \\
& \text { subdominant } L \rightarrow T \text { (suppressed by } 1 / Q^{2} \text {) }
\end{aligned}
$$

HERMES(14) ω SDMEs at $W=4.8 \mathrm{GeV}$:

$$
U_{1}=1-r_{00}^{04}+2 r_{1-1}^{04}-2 r_{11}^{1}-2 r_{1-1}^{1}=2 \frac{d \sigma_{U}}{d \sigma} \quad d \sigma_{U}=\frac{U_{1}}{2-U_{1}} d \sigma_{N}
$$

$d \sigma_{N}$: from our GPDs H and E (like ρ^{0}) and small contr. from H_{T} and \bar{E}_{T} $d \sigma_{U}$: pion pole $\left(\sim g_{\pi \omega}\left(Q^{2}\right)\right)$ and small background (\widetilde{H})

$\pi-\omega$ form factor

$g_{\pi \omega}$ unknown exp. in space-like region, except at $Q^{2}=0$ from $\omega \rightarrow \pi \gamma$ decay fit $g_{\pi \omega}$ to U_{1} results consistent with $Q^{2}=0$ value interpolation:

$$
\begin{gathered}
\left(a_{1}=3.1 \mathrm{GeV} \quad a_{2}=1.2 \mathrm{GeV}\right) \\
\left|g_{\pi \omega}\right|=\frac{2.3 \mathrm{GeV}^{-1}}{1+Q^{2} / a_{1}^{2}+Q^{4} / a_{2}^{4}}
\end{gathered}
$$

sign cannot be fixed from SDME; need spin asymmetries theory: QCD sum rules (only soft) Khodjamirian(99), Braun-Halperin(94) perturbative QCD to twist-3 accuracy Chernyak-Zhitnitsky(84) ($W=4.8 \mathrm{GeV}$, without pion pole, 8 GeV , dotted $3.5 \mathrm{GeV}, t^{\prime}=-0.08 \mathrm{GeV}^{2}$)

Longitudinal/transversal separation

$$
R=\frac{1}{\epsilon} \frac{r_{00}^{04}}{1-r_{00}^{04}}=\frac{d \sigma(L \rightarrow L)+d \sigma(T \rightarrow L) / \epsilon}{d \sigma(T \rightarrow T)+\epsilon d \sigma(L \rightarrow T)}
$$

$W=4.8 \mathrm{GeV}, t^{\prime}=-0.08 \mathrm{GeV}^{2}$

$Q^{2}=2.42 \mathrm{GeV}^{2}$
differs from $d \sigma_{L} / d \sigma_{T}$ (dashed line)
by $L \rightarrow T$ (pion pole) and $T \rightarrow L\left(H_{T}, \bar{E}_{T}\right)$ transitions

Integrated cross sections

data: CLAS, ZEUS
integrated on $0<-t^{\prime}<0.5 \mathrm{GeV}^{2}$
very different from expectations for $Q^{2} \rightarrow \infty$
without pion pole: $\sigma_{U}<\sigma_{N}$ and $\sigma_{T}<\sigma_{L}$ as for ρ^{0} production

Summary

- The handbag approach, generalized to transverse photons and with meson size corrections, describes all DVMP and DVCS data at small skewness
- From the combined analysis of nucleon form factors, DVMP and DVCS a set of GPDs is extracted (H, E, \widetilde{H} and a bit of information on H_{T} and \bar{E}_{T}).
- This set of GPDs allows to calculate other hard exclusive processes, to evaluate Ji's sum rule and to study the transverse localization of partons in the proton (at least for valence quarks).
- Nothing is perfect - the GPDs need improvements: use of new PDFs, more complicated profile fcts. for all GPDs, D-term, kinematical corrections at low Q^{2}, low W, large ξ and new data from COMPASS, JLAB12 and EIC

