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Motivation

Main focus: Form factors of the nucleon-∆ system
- describe structure of hadrons e.g. quadrupole N to ∆ transition form
factors may indicate deformation in the nucleon and/or ∆
- provide important input for phenomenological models builders and
for chiral effective theories
- make direct contact with experiment e.g.

1. provide a prediction for the parity violating asymmetry in axial N
to ∆ transition

2. evaluate the EMR and CMR at low q2

- test the diagonal and non-diagonal Goldberger-Treiman relations
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Evaluation of Observables
Calculate vacuum expectation value of gauge invariant operators in Euclidean time:

< Ω|Ô|Ω >=
1
Z

Z
d [U]d [ψ̄]d [ψ] O[U, ψ̄, ψ]e−Sg [U]−SF [U,ψ̄,ψ]

Integrate over the fermionic degrees of freedom

−→< Ω|Ô|Ω >=
1
Z

Z
d [U] det(D[U])O[U,D−1[U]]e−Sg [U]

→ D−1
jn [U] substitutes each appearance of −ψ̄nψj - valence quarks

→ det(D[U]) - sea quarks

Put on a 4-D lattice: many ways to do this → Wilson, staggered, Domain wall
fermions
Do numerically by stochastically generating a representative ensemble of U
according to the probability

P[U] =
1
Z

exp {−Sg [U] + ln (det(D[U]))}

Then compute < Ω|Ô|Ω >= limN→∞
1
N
PN

k=1 O[Uk ,D−1[Uk ]]
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Lattice caveats
q2-values: Fourier transform of lattice results in coordinate
space taken numerically→ for large values of momentum
transfer results are too noisy
=⇒ Limited to −q2 ∼ 2 GeV2.

Finite Volume: Only discrete values of momentum in units of
2π/L are allowed. Take box sizes such that Lmπ

>∼ 4.5.

Finite lattice spacing a (Ultra-violet cut-off): Use two different
formulations:
1. Wilson fermions: O(a) errors
2. Staggered fermions with Asqtad action and Domain wall
fermions (hybrid approach): O(a2) errors
=⇒ agreement between them provides a consistency check of
lattice formulation.

Larger bare u- and d -quark masses: Typically we use quarks
that correspond to pions of mass above 350 MeV =⇒ Need to
extrapolate to the chiral limit.
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γ∗N → ∆

A dominant magnetic dipole, M1
An electric quadrupole, E2 and a Coulomb, C2 signal a
deformation in the nucleon/∆
Experimental evidence for non-zero deformation in nucleon/∆ ∗

Deformed

Spherical

Precise data strongly
“suggesting” deformation in the
Nucleon/∆
EMR=(−2.00± 0.40stat+sys ± 0.27mod)%,
CMR=(−6.27± 0.32stat+sys ± 0.10mod)%

REM(EMR) = − GE2(q2)

GM1(q2)
,

RSM(CMR) = − |~q|
2m∆

GC2(q2)

GM1(q2)
,

in lab frame of the ∆.

∗C. N. Papanicolas, Eur. Phys. J. A18, 141 (2003); N. Sparveris et al., PRL 94,
022003 (2005)
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Nγ∗ → ∆ on the Lattice

(
~x1, t1

)
(0, 0)

N
(
~p
)

~q = ~p′ − ~p

jµ

(
~x2, t2

)
∆

(
~p′

)
Sachs form factors:

GM1(q2), GE2(q2), GC2(q
2)

The standard decomposition of the N to ∆ electromagnetic matrix element:

〈∆(~p′, s′)|jµ|N(~p, s)〉 = ı

r
2
3

 
m∆mN

E∆(p′)EN(p)

!1/2

ūσ(~p′, s′)Oσµu(~p, s) ,

with
Oσµ = GM1(q2)K M1

σµ + GE2(q2)K E2
σµ + GC2(q

2)K C2
σµ ,

Use the lattice conserved current for Wilson fermions and the local current for DWF
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Three-point functions

Ĵ

h
(
~p
)

h̃
(
~p′

)
~q = ~p′ − ~p

(
~x2, t2

) (
~x1, t1

)
(0, 0)

Gh̃Jh(t2, t1; q) =

< Ω|
X
x1,x2

eiq.x1 T̂ Ĵh̃(x2, t2)Ĵ(x1, t1)Ĵ
†
h (0)|Ω > ,

where the final hadron is produced at rest.

The interpolating fields for N and ∆ (sink and
source Wuppertal smeared):

Jp(x) = εabc [uTa(x)Cγ5db(x)]uc(x),

J∆+

σ (x) =
1
√

3
εabc{2[uTa(x)Cγσdb(x)]uc(x)

+ [uTa(x)Cγσub(x)]dc(x)}

HYP-smearing applied to the links for the
interpolating fields for the case of
unquenched Wilson fermions

HYP-smeared MILC configurations

Sequential inversion : fixed quantum numbers at sink and source

fixed sink time t2 and variable insertion time t1

this allows any operator to be inserted at t1

sum over all ~x1 and ~x2 and vary t1 in search for a plateau
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Ĵ

h
(
~p
)

h̃
(
~p′

)
~q = ~p′ − ~p

(
~x2, t2

) (
~x1, t1

)
(0, 0)

Gh̃Jh(t2, t1; q) =

< Ω|
X
x1,x2

eiq.x1 T̂ Ĵh̃(x2, t2)Ĵ(x1, t1)Ĵ
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The exponential time dependence and unknown overlaps of the
interpolating fields with the physical states cancel by dividing the
three-point function with appropriate combinations of two-point
functions. For example

R = Gh̃jµh(t2,t1;q)√
Gh̃(2t2−2t1;0)Gh(2t1;q)

t1>>1,t2−t1>>1−→ < h̃|jµ|h >

1t

t2

1t2t2 −2t

N

0

R  =
0

NN

2 01
1/2

∆

∆

∆

R

t1

plateau

Wuppertal and HYP-smearing filters ground state efficiently i.e. t1 and t2 − t1
small

Optimize R so that two-points functions with the shortest possible time
separation are involved → less noisy signal
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Lattice parameters
Wilson fermions

number of confs κ mπ (GeV) mN (GeV)
Quenched 323 × 64, β = 6.0, a−1 = 2.14(6) GeV (a = 0.09 fm) from nucleon mass at chiral limit

200 0.1554 0.563(4) 1.267(11)
200 0.1558 0.490(4) 1.190(13)
200 0.1562 0.411(4) 1.109(13)

κc =0.1571 0. 0.938(9)
Unquenched∗ 243 × 40,β = 5.6, a−1 = 2.56(10) GeV (a = 0.08 fm)

185 0.1575 0.691(8) 1.485(18)
157 0.1580 0.509(8) 1.280(26)

Unquenched† 243 × 32,β = 5.6, a−1 = 2.56(10) GeV
200 0.15825 0.384(8)← Lmπ = 3.6 1.083(18)

κc = 0.1585 0. 0.938(33)

Hybrid scheme a−1 = 1.58 GeV (a = 0.125 fm) from MILC collaboration
number of confs Volume (amu,d)sea (ams)

sea (amq)DW mDW
π (GeV) mN (GeV)

150 203 × 64 0.03 0.05 0.0478 0.589(2) 1.392(9)
198 203 × 64 0.02 0.05 0.0313 0.501(4) 1.255(19)
100 203 × 64 0.01 0.05 0.0138 0.362(5) 1.138(25)
150 283 × 64 0.01 0.05 0.0138 0.354(2) 1.210(24)

For Wilson fermions we have consistency with determination of scale using the Sommer scale.

∗
SESAM collaboration (TχL), B. Orth et al., Phys. Rev. D72(2005)014503
†

DESY-Zeuthen group, C.Urbach et al., Comput. Phys. Commun. 174(2006)87.
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Magnetic dipole form factor§

Ash parametrization: G∗
m = 1r

1+ Q2

(mN +m∆)2

GM1 , Q2 = −q2 is the

momentum transfer squared

Results in units of Bohr magnetons using the nucleon mass determined on the
lattice
Almost no dependence on quark mass for this range of pion masses

§C.A. Ph. de Forcrand, th. Lippert H. Neff, J. W. Negele, K. Schilling, W. Schroers,
A. Tsapalis, PRL 94, 021601 (2005)
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Magnetic dipole form factor§

Ash parametrization: G∗
m = 1r

1+ Q2

(mN +m∆)2

GM1

Results in units of Bohr magnetons using the nucleon mass determined on the
lattice
Unquenching effects small for this range of pion masses

§C.A. Ph. de Forcrand, Th. Lippert H. Neff, J. W. Negele, K. Schilling, W. Schroers,
A. Tsapalis, PRL 94, 021601 (2005)
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Magnetic dipole form factor§

Ash parametrization: G∗
m = 1r

1+ Q2

(mN +m∆)2

GM1

Results in the hybrid approach in agreement with results using Wilson fermions
=⇒ since these two lattice formulations have different systematics (e.g. different
dependence on the lattice spacing a) agreement between them is non-trivial →
small lattice artifacts?

§C.A., R. Edwards, G. Koutsou, Th. Leontiou, H. Neff, J. W. Negele, W. Schroers,
A. Tsapalis, PoS LAT2005, 091 (2006)
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Results for magnetic dipole at the physical limit

What could explain the discrepancy with experiment?

Finite lattice spacing, finite volume??
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Check lattice calculation

Increasing source-sink separation t2 by 25% fm does not change the results.
Good plateaus → ground state dominance.

Increasing volume from 2.5 fm to 3.5 fm does not change the results.

For Wilson fermions we have O(a) errors, in the hybrid approach we have O(a2)
errors

Extrapolation to physical limit???
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Results for EMR and CMR

REM(EMR) = −GE2(q2)

GM1(q2)
, RSM(CMR) = − |

~q|
2m∆

GC2(q2)

GM1(q2)
,

in lab frame of the ∆.
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Results for EMR and CMR at physical limit

REM(EMR) = −GE2(q2)

GM1(q2)
, RSM(CMR) = − |

~q|
2m∆

GC2(q2)

GM1(q2)
.

in lab frame of the ∆

EMR in agreement with experiment

CMR smaller at low q2
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Extrapolation in m2
π

0 0.05 0.1 0.15 0.2 0.25

mπ
2 (GeV

2
)

-10

-8

-6

-4

-2

0

2

4

R
SM

 (
%

)

-4

-2

0

2

4

R
E

M
 (

%
) We used a linear extrapolation in order to
approach the physical limit

Calculation within a chiral effective-field theory,

using an expansion where m∆−mN
mN

∼ O(δ) and
mπ
mN

∼ O(δ2), has shown strong dependence on

mπ . Only done at the lowest Q2 ∗

*V. Pascalutsa and M. Vanderhaeghen PRL 95
(2005) 232001
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N to ∆ axial form factors

Any operator can be inserted at t1 → with no additional inversions we
can evaluate the N-N and N-∆ matrix elements for any operator.

(
~x1, t1

)
(0, 0)

N
(
~p
)

~q = ~p′ − ~p

Aµ

(
~x2, t2

)
∆

(
~p′

)

Vector current: jµ = ψ̄γµψ

Pseudoscalar current: Pa = ψ̄iγ5
τa

2 ψ

Axial current: Aa
µ = ψ̄γµγ5

τa

2 ψ : axial N
to ∆ transition form factors and
asymmetry to be measured at JLab (G0
experiment)

The optimal ratios: shortest possible time separation

Rσ(t2, t1; p′, p; Γ;µ) =
〈G∆AµN

σ (t2, t1; p′, p; Γ)〉
〈G∆∆

ii (t2; p′; Γ4)〉

"
〈GNN (t2 − t1; p; Γ4)〉〈G∆∆

ii (t1; p′; Γ4)〉〈G∆∆
ii (t2; p′; Γ4)〉

〈G∆∆
ii (t2 − t1; p′; Γ4)〉〈GNN (t1; p; Γ4)〉〈GNN (t2; p; Γ4)〉

#1/2

t2−t1�1,t1�1
⇒ Πσ(p′, p; Γ;µ).

σ is the spin index of the ∆ field and the projection matrices Γ are given

Γi =
1

2

„
σi 0
0 0

«
Γ4 =

1

2

„
I 0
0 0

«
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Nucleon axial form factors
Decomposition of the nucleon weak matrix element:

〈N(p′)|A3
µ|N(p)〉 = ı

 
m2

N
EN(p′)EN(p)

!1/2

ū(p′)

"„
GA(q2)γµγ5 +

qµ
2mN

Gp(q2)

«#
τ3

2
u(p)

0 0.2 0.4 0.6 0.8 1
Q

2
 [GeV

2
]

0

0.2

0.4

0.6

0.8

1

G
A
 (

Q
2 ) 

/ G
A
 (

0)

0 0.05 0.1 0.15 0.2
Q

2
 [GeV

2
]

0

50

100

150

200

G
P
 (

Q
2 )

From V. Bernard, L. Elouadrhiri and U. Meissner, hep-ph/0107088
Lattice studies:
-GA(0) LHP collaboration PRL 96 052001 (2006) and QCDSF PRD 74 094508 (2006)

- GA(q2) and Gp(q2) K.F. Liu, S.J. Dong and T. Drapper, PRL 74 (1995) 2172 and LHP

Collaboration, hep-lat/0610007.
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N to ∆ axial transition form factors∗

Decomposition of the N to ∆ weak matrix element in terms of four
transition form factors†

〈∆(p′)|A3
µ|N(p)〉 = ı

r
2
3

 
m∆mN

E∆(p′)EN(p)

!1/2

ūλ(p′)

"
 

CA
3

mN
γν +

CA
4

m2
N

p′ν
!

(gλνgρν − gλρgµν)qρ + CA
5 gλµ +

CA
6

m2
N

qλqµ

#
u(p)

∗C.A., Th. Leontiou, J. W. Negele and A. Tsapalis, PRL 98 052003 (2007)
†S.P. Wells (PAVI 2002); L. S. Alder, Ann. Phys. 50, 189 (1968); L. Smith, Phys.

Rep. 3C(1972) 261
C. Alexandrou University of Cyprus



Motivation Lattice Techniques N to ∆ electromagnetic form factors N to ∆ axial form factors Conclusions

Parity violating asymmetry

Under the assumptions that CA
3 ∼ 0 and CA

4 � CA
5 the parity violating

asymmetry is proportional to the ratio CA
5 /CV

3 (analog of gA/gV ) ∗

CV
3 can be evaluated from the electromagnetic N to ∆ transition

G0 collaboration plans to measure PV asymmetry at Jefferson Lab. ∗∗

Non-zero when Q2 = 0

Increases with Q2 up to about
Q2 ∼ 1.5 GeV2

Unquenching effects small for this
range of quark masses

Weak quark mass dependence
→ results can be taken as a
physical prediction for the ratio

*N.C. Mukhopadhyay et al. NP A633(1998) 481
**S.P. Wells, PAVI 2002
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PCAC

Partial conservation of axial current:

∂µAa
µ = fπm2

ππa

fπ determined from the two-point function

< 0|Aa
µ|πb(p) >= ipµδabfπ

with fπ = 92 MeV.

Axial Ward Identity:
∂µAa

µ = 2mqPa

=⇒ relate the pion field πa with the pseudoscalar density:
πa =

(
2mqPa/fπm2

π

)
Compute mq from the matrix element:

mq =
mπ < 0|Aa

0|πa(0) >

2 < 0|Pa|πa(0) >
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Pion-nucleon (∆) form factors

Obtain couping of the nucleon with the pion field using the
relation

2mq< N(p′)|P3|N(p) >=
fπm2

πGπNN

m2
π − q2 ū(p′)iγ5u(p)

Similarly for GπN∆ we have

2mq< ∆(p′)|P3|N(p) >=

√
2
3

fπm2
πGπN∆

m2
π − q2 ūν(p′)

qν

2mN
u(p)

PCAC relates axial form factors GA and Gp with the couping
constant GπNN and equivalently CA

5 and CA
6 with GπN∆

=⇒ Goldberger Treiman relations (GTR)
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The Goldberger-Treiman relations

Diagonal and non-diagonal GTR:

GA(q2) +
q2

4m2
N

Gp(q2) =
1

2mN

2GπNN(q2)fπm2
π

m2
π − q2

CA
5 (q2) +

q2

m2
N

CA
6 (q2) =

1
2mN

GπN∆(q2)fπm2
π

m2
π − q2

Assuming pion pole dominance for Gp and CA
6 :

1
2mN

Gp(q2) ∼ 2GA(q2)

m2
π − q2 ∼

2GπNN(q2)fπ
m2

π − q2

1
m2

N
CA

6 (q2) ∼ CA
5 (q2)

m2
π − q2 ∼

1
2mN

GπN∆(q2)fπ
m2

π − q2

=⇒ GTR: GπNN fπ = mNGA and GπN∆fπ = 2mNCA
5

C. Alexandrou University of Cyprus



Motivation Lattice Techniques N to ∆ electromagnetic form factors N to ∆ axial form factors Conclusions

Ratios

Advantages of taking ratios:

Renormalization constants cancel

Weaker dependence on quark mass

Requires no knowledge of mq which can have large lattice
artifacts

Finite volume and lattice spacing effects?
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Ratios of GπNN and GπN∆

The ratio GπN∆/GπNN comes out independent of q2 and quark mass.
Furthermore the value of 1.6 is what is expected.

The ratio 8CA
6 /Gp ∼ 1.6 ∼ GπN∆/GπNN =⇒ pion pole dominance:

1
2mN

Gp ∼
2GπNN fπ
m2
π − q2

1
m2

N
CA

6 ∼
1

2mN

GπN∆fπ
m2
π − q2
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Ratios of GπNN and GπN∆

The ratio GπN∆/GπNN comes out independent of q2 and quark mass.
Furthermore the value of 1.6 is what is expected.

The ratio 8CA
6 /Gp ∼ 1.6 ∼ GπN∆/GπNN =⇒ pion pole dominance

The ratio 2CA
5 /GA ∼ 1.6 ∼ GπN∆/GπNN =⇒ imply the Goldberger-Treiman

relations with the assumption of pole dominance
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Results for the Goldberger-Treiman relation

Ratio of non-diagonal to diagonal GTR

Ratio is unity as expected but...
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Pion pole dominance

Pion dominance:Gp/GA = 4m2
N/(Q

2 + m2
π) and CA

6 /CA
5 = m2

N/(Q
2 + m2

π) =⇒
ratios should be described by the dashed lines

Solid curves are fits to a monopole g0
(Q2+m2)

. Fit yieldsm > mπ .
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Pion pole dominance

Pion dominance:Gp/GA = 4m2
N/(Q

2 + m2
π) and CA

6 /CA
5 = m2

N/(Q
2 + m2

π) =⇒
ratios should be described by the dashed lines
Solid curves are fits to a monopole g0

(Q2+m2)
. Fit yieldsm > mπ .

Dynamical QCD results in hybrid approach higher at small Q2

For the nucleon form factors results in the hybrid approach are by the LHP
collaboration (Thanks J. Negele).
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Q2-dependence of GA and CA
5

Fit: GA and CA
5 to a dipole g0/(

Q2

m2
A

+ 1)2 as done for experimental data. Note

that a good description is also provided by an exponential g̃0e−Q2/m̃2
A .
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Q2-dependence of GA and CA
5

Hybrid results on GA from LHP collaboration (Thanks: J. Negele).

Dynamical QCD results in the hybrid approach deviate at smallest pion mass at
low Q2.
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Q2-dependence of GA and CA
5

Hybrid results on GA from LHP collaboration (Thanks: J. Negele).

Lattice results in the hybrid approach show deviations at low Q2.
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Renormalized quark mass

Compute mq from the
matrix element:

mq =
mπ < 0|Aa

0|πa(0) >

2 < 0|Pa|πa(0) >

Needed for the extraction
of the strong coupling
constants

Good plateaus lead to
accurate determination of
the quark mass.
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Pion pole dominance

For pole dominance:

G∗
πNN ≡

GπNN

1 + Q2/m2
π

= Gp
2m2

π

mN fπ

G∗
πN∆ ≡

GπN∆

1 + Q2/m2
π

= CA
6

m2
π

4mN fπ

Well satisfied
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GπNN and GπN∆

Curves are obtained using:
- Red dash curve:

GπNN(Q2) = GA(Q2)
mN

fπ

GπN∆(Q2) = CA
5 (Q2)

2mN

fπ

Experimental value: GπNN(0) = 13.21(11)
=⇒ lattice results underestimate GπNN as
Q2 → 0
- Blue dotted line:

GπNN(Q2) = a
„

1−∆
Q2

m2
π

«
,

GπN∆(Q2) = 1.6GπNN(Q2)

with a,∆ fit parameters.
We find a ∼ 70% what expected and ∆ ∼
5% at the lightest quenched mass.
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Conclusions

Calculation of Vector, Axial vector and Pseudoscalar form factors
in the N to ∆ in the quenched approximation + two-flavors of
dynamical Wilson fermions + Hybrid scheme.

Ratios of form factors as expected:
- quadrupole to dipole ratios EMR and CMR
- ratios of axial form factors
- ratios of pion coupling constants GπN∆ and GπNN

Predict the ratio CA
5 /CV

3 as a function of Q2 and hence the
leading contribution to the the parity violating asymmetry.

Deviations from experiment seen for the dipole N-∆ transition
form factor G∗

m and the values of GπNN and GπN∆ in the limit
Q2 → 0.

Check finite a, mπ → 140 MeV and renormalized quark mass
evaluated using AWI.
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Backup slides
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Goldberger Treiman relations

Ratios: GπNN fπ/mNGA and GπN∆fπ/2mNCA
5

Deviations decrease as q2 increases

=⇒ axial form factors GA and CA
5 have different Q2 dependence at low Q2.
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GπNN and GπN∆ in the quenched theory

Curves are fits to

c0(Q2 + m2
π)

(Q2/m2
A + 1)2(Q2 + m2)

at the smallest pion mass.

The axial mass mA is
determined from fitting GA
or CA

5

m from fitting the ratio of
Gp/GA or CA

6 /CA
5

c0 is fitted to the coupling
constants GπNN or GπN∆
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Comparison with results using Domain wall fermions

LHPC/MILC ∗:

Hybrid calculation over a range of
pion masses using 350, 564, 657
and 270 configurations.

Lattice spacing: qq̄ potential for
domain wall fermions and
from the nucleon mass at the
chiral limit for Wilson fermions.

Results using and DWF are in
agreement.

=⇒ This agreement is not trivial
since these lattice formulations
have different lattice artifacts.

* Thanks J. W. Negele for the DWF
results
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Check lattice calculation

Good plateaus → ground state dominance
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