N to Δ electromagnetic and axial form factors in Lattice QCD

C. Alexandrou
University of Cyprus

Exclusive Reactions at High Momentum Transfer
Jefferson Lab
24 May 2007

Outline

1. Motivation
2. Lattice Techniques
3. $N \to \Delta$ electromagnetic form factors
4. $N \to \Delta$ axial form factors
 - Parity violating asymmetry
 - Goldberger-Treiman relations
5. Conclusions
Main focus: Form factors of the nucleon-Δ system
- describe structure of hadrons e.g. quadrupole N to Δ transition form factors may indicate deformation in the nucleon and/or Δ
- provide important input for phenomenological models builders and for chiral effective theories
- make direct contact with experiment e.g.

1. provide a prediction for the parity violating asymmetry in axial N to Δ transition

2. evaluate the EMR and CMR at low q^2

- test the diagonal and non-diagonal Goldberger-Treiman relations
Evaluation of Observables

Calculate vacuum expectation value of gauge invariant operators in Euclidean time:

\[\langle \Omega | \hat{O} | \Omega \rangle = \frac{1}{Z} \int d[U] d[\bar{\psi}] d[\psi] \, O[U, \bar{\psi}, \psi] e^{-S_g[U] - S_F[U, \bar{\psi}, \psi]} \]

Integrate over the fermionic degrees of freedom

\[\longrightarrow \langle \Omega | \hat{O} | \Omega \rangle = \frac{1}{Z} \int d[U] \, \det(D[U]) \, O[U, D^{-1}[U]] e^{-S_g[U]} \]

\[\rightarrow D_{jn}^{-1}[U] \text{ substitutes each appearance of } - \bar{\psi}_n \psi_j \text{ - valence quarks} \]
\[\rightarrow \det(D[U]) \text{ - sea quarks} \]

- Put on a 4-D lattice: many ways to do this → Wilson, staggered, Domain wall fermions
- Do numerically by stochastically generating a representative ensemble of \(U \) according to the probability

\[P[U] = \frac{1}{Z} \exp \{ -S_g[U] + \ln(\det(D[U])) \} \]

- Then compute \(\langle \Omega | \hat{O} | \Omega \rangle = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} O[U^k, D^{-1}[U^k]] \)
Evaluation of Observables

Calculate vacuum expectation value of gauge invariant operators in Euclidean time:

\[< \Omega | \hat{O} | \Omega > = \frac{1}{Z} \int d[U] d[\bar{\psi}] d[\psi] \quad O[U, \bar{\psi}, \psi] e^{-S_g[U] - S_F[U, \bar{\psi}, \psi]} \]

Integrate over the fermionic degrees of freedom

\[\rightarrow < \Omega | \hat{O} | \Omega > = \frac{1}{Z} \int d[U] \quad \text{det}(D[U]) O[U, D^{-1}[U]] e^{-S_g[U]} \]

\[\rightarrow D_{jn}^{-1}[U] \text{ substitutes each appearance of } -\bar{\psi}_n \psi_j \text{ - valence quarks} \]
\[\rightarrow \text{det}(D[U]) \text{ - sea quarks} \]

- Put on a 4-D lattice: many ways to do this \(\rightarrow \) Wilson, staggered, Domain wall fermions
- Do numerically by stochastically generating a representative ensemble of \(U \) according to the probability

\[P[U] = \frac{1}{Z} \exp \{ -S_g[U] + \ln (\text{det}(D[U])) \} \]

- Then compute

\[< \Omega | \hat{O} | \Omega > = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} O[U^k, D^{-1}[U^k]] \]
Evaluation of Observables

Calculate vacuum expectation value of gauge invariant operators in Euclidean time:

\[
< \Omega | \hat{O} | \Omega > = \frac{1}{Z} \int d[U] d[\bar{\psi}] d[\psi] \ O[U, \bar{\psi}, \psi] e^{-S_g[U] - S_F[U, \bar{\psi}, \psi]}
\]

Integrate over the fermionic degrees of freedom

\[
\rightarrow < \Omega | \hat{O} | \Omega > = \frac{1}{Z} \int d[U] \ \det(D[U]) \ O[U, D^{-1}[U]] e^{-S_g[U]}
\]

\[D_{jn}^{-1}[U] \] substitutes each appearance of \(-\bar{\psi}_n \psi_j\) - valence quarks
\[\det(D[U]) \] - sea quarks

- Put on a 4-D lattice: many ways to do this → Wilson, staggered, Domain wall fermions
- Do numerically by stochastically generating a representative ensemble of \(U\) according to the probability

\[
P[U] = \frac{1}{Z} \exp \left\{ -S_g[U] + \ln (\det(D[U])) \right\}
\]

- Then compute \(< \Omega | \hat{O} | \Omega > = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} O[U^k, D^{-1}[U^k]]\)
Lattice caveats

- q^2-values: Fourier transform of lattice results in coordinate space taken numerically → for large values of momentum transfer results are too noisy
 \implies Limited to $-q^2 \sim 2 \text{ GeV}^2$.

- Finite Volume: Only discrete values of momentum in units of $2\pi/L$ are allowed. Take box sizes such that $Lm_\pi \gtrsim 4.5$.

- Finite lattice spacing a (Ultra-violet cut-off): Use two different formulations:
 1. Wilson fermions: $O(a)$ errors
 2. Staggered fermions with Asqtad action and Domain wall fermions (hybrid approach): $O(a^2)$ errors
 \implies agreement between them provides a consistency check of lattice formulation.

- Larger bare u- and d -quark masses: Typically we use quarks that correspond to pions of mass above 350 MeV \implies Need to extrapolate to the chiral limit.

C. Alexandrou
University of Cyprus
Lattice caveats

- q^2-values: Fourier transform of lattice results in coordinate space taken numerically \rightarrow for large values of momentum transfer results are too noisy
 \implies Limited to $-q^2 \sim 2\text{ GeV}^2$.

- Finite Volume: Only discrete values of momentum in units of $2\pi/L$ are allowed. Take box sizes such that $Lm_\pi \gtrsim 4.5$.

- Finite lattice spacing a (Ultra-violet cut-off): Use two different formulations:
 1. Wilson fermions: $\mathcal{O}(a)$ errors
 2. Staggered fermions with Asqtad action and Domain wall fermions (hybrid approach): $\mathcal{O}(a^2)$ errors
 \implies agreement between them provides a consistency check of lattice formulation.

- Larger bare u- and d-quark masses: Typically we use quarks that correspond to pions of mass above 350 MeV \implies Need to extrapolate to the chiral limit.
Lattice caveats

- **q^2-values:** Fourier transform of lattice results in coordinate space taken numerically \rightarrow for large values of momentum transfer results are too noisy \implies Limited to $-q^2 \sim 2 \text{ GeV}^2$.

- **Finite Volume:** Only discrete values of momentum in units of $2\pi/L$ are allowed. Take box sizes such that $Lm_\pi \gtrsim 4.5$.

- **Finite lattice spacing a** (Ultra-violet cut-off): Use two different formulations:
 1. Wilson fermions: $O(a)$ errors
 2. Staggered fermions with Asqtad action and Domain wall fermions (hybrid approach): $O(a^2)$ errors
 \implies agreement between them provides a consistency check of lattice formulation.

- **Larger bare u- and d -quark masses:** Typically we use quarks that correspond to pions of mass above 350 MeV \implies Need to extrapolate to the chiral limit.
A dominant magnetic dipole, M_1
- An electric quadrupole, E_2 and a Coulomb, C_2 signal a deformation in the nucleon/Δ
- Experimental evidence for non-zero deformation in nucleon/Δ *

Precise data strongly “suggesting” deformation in the Nucleon/Δ

$\gamma^* N \rightarrow \Delta$

$R_{EM}(EMR) = -\frac{G_{E2}(q^2)}{G_{M1}(q^2)}$

$R_{SM}(CMR) = -\frac{|\bar{q}| G_{C2}(q^2)}{2m_\Delta} \frac{G_{M1}(q^2)}{G_{M1}(q^2)}$

in lab frame of the Δ.

$N\gamma^* \rightarrow \Delta$ on the Lattice

The standard decomposition of the N to Δ electromagnetic matrix element:

$$\langle \Delta(\vec{p}', s') | j_\mu | N(\vec{p}, s) \rangle = \sqrt{\frac{2}{3}} \left(\frac{m_\Delta m_N}{E_\Delta(\vec{p}') E_N(\vec{p})} \right)^{1/2} \bar{u}^\sigma(\vec{p}', s') \mathcal{O}_{\sigma\mu} u(\vec{p}, s),$$

with

$$\mathcal{O}_{\sigma\mu} = G_{M1}(q^2) K_{\sigma\mu}^{M1} + G_{E2}(q^2) K_{\sigma\mu}^{E2} + G_{C2}(q^2) K_{\sigma\mu}^{C2},$$

Sachs form factors:

$$G_{M1}(q^2), \ G_{E2}(q^2), \ G_{C2}(q^2)$$

Use the lattice conserved current for Wilson fermions and the local current for DWF.
Three-point functions

\[\hat{J} \]

The interpolating fields for N and Δ (sink and source Wuppertal smeared):

\[J^p(x) = \epsilon^{abc} [u^{Ta}(x) C \gamma_5 d^b(x)] u^c(x), \]

\[J^{\Delta^+}_\sigma(x) = \frac{1}{\sqrt{3}} \epsilon^{abc} \{2 [u^{Ta}(x) C \gamma_\sigma d^b(x)] u^c(x) \]

where the final hadron is produced at rest.

Sequential inversion: fixed quantum numbers at sink and source

fixed sink time \(t_2 \) and variable insertion time \(t_1 \)

this allows any operator to be inserted at \(t_1 \)

sum over all \(\vec{x}_1 \) and \(\vec{x}_2 \) and vary \(t_1 \) in search for a plateau

HYP-smeared applied to the links for the interpolating fields for the case of unquenched Wilson fermions

HYP-smeared MILC configurations
Three-point functions

\[\hat{J} \]
\[\tilde{q} = \vec{p}' - \vec{p} \]
\[(\vec{x}_2, t_2) \quad \tilde{h}(\vec{p}') \]
\[(\vec{x}_1, t_1) \quad (0, 0) \quad h(\vec{p}) \]
\[G_{\tilde{h}Jh}(t_2, t_1; \vec{q}) = \]
\[< \Omega | \sum_{\vec{x}_1, \vec{x}_2} e^{i\vec{q}.\vec{x}_1} \hat{T}\hat{J}_h(\vec{x}_2, t_2)\hat{J}(\vec{x}_1, t_1)\hat{J}_h^\dagger(0) | \Omega > \]

where the final hadron is produced at rest.

The interpolating fields for N and \(\Delta \) (sink and source Wuppertal smeared):

\[J^p(x) = \epsilon^{abc}[u^{Ta}(x)C\gamma_5d^b(x)]u^c(x), \]
\[J_\sigma^{\Delta+}(x) = \frac{1}{\sqrt{3}}\epsilon^{abc}\{2[u^{Ta}(x)C\gamma_\sigma d^b(x)]u^c(x) + [u^{Ta}(x)C\gamma_\sigma u^b(x)]d^c(x)\} \]

- HYP-smearing applied to the links for the interpolating fields for the case of unquenched Wilson fermions
- HYP-smeared MILC configurations

- Sequential inversion: fixed quantum numbers at sink and source
- fixed sink time \(t_2 \) and variable insertion time \(t_1 \)
- this allows any operator to be inserted at \(t_1 \)
- sum over all \(\vec{x}_1 \) and \(\vec{x}_2 \) and vary \(t_1 \) in search for a plateau
The exponential time dependence and unknown overlaps of the interpolating fields with the physical states cancel by dividing the three-point function with appropriate combinations of two-point functions. For example

\[R = \frac{G \tilde{h}_{\mu} h(t_2, t_1; \mathbf{q})}{\sqrt{G \tilde{h}(2t_2 - 2t_1; 0) G h(2t_1; \mathbf{q})}} \cdot \frac{t_1 \gg 1, t_2 - t_1 \gg 1}{\rightarrow} < \tilde{h} | j_{\mu} | h > \]

- Wuppertal and HYP-smearing filters ground state efficiently i.e. \(t_1 \) and \(t_2 - t_1 \) small
- Optimize \(R \) so that two-points functions with the shortest possible time separation are involved \(\rightarrow \) less noisy signal
The exponential time dependence and unknown overlaps of the interpolating fields with the physical states cancel by dividing the three-point function with appropriate combinations of two-point functions. For example

\[
R = \frac{G^\tilde{h}_j \mu \tilde{h}(t_2, t_1; q)}{\sqrt{G^\tilde{h}(2t_2 - 2t_1; 0) G^h(2t_1; q)}} \xrightarrow{t_1 >> 1, t_2 - t_1 >> 1} < \tilde{h} | j_\mu | h >
\]

- Wuppertal and HYP-smearing filters ground state efficiently i.e. \(t_1 \) and \(t_2 - t_1 \) small
- Optimize \(R \) so that two-points functions with the shortest possible time separation are involved \(\rightarrow \) less noisy signal
Lattice Parameters

Wilson Fermions

<table>
<thead>
<tr>
<th>Number of Conf.</th>
<th>(\kappa)</th>
<th>(m_\pi) (GeV)</th>
<th>(m_N) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quenched (32^3 \times 64), (\beta = 6.0), (a^{-1} = 2.14(6)) GeV ((a = 0.09 \text{ fm})) from nucleon mass at chiral limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.1554</td>
<td>0.563(4)</td>
<td>1.267(11)</td>
</tr>
<tr>
<td>200</td>
<td>0.1558</td>
<td>0.490(4)</td>
<td>1.190(13)</td>
</tr>
<tr>
<td>200</td>
<td>0.1562</td>
<td>0.411(4)</td>
<td>1.109(13)</td>
</tr>
<tr>
<td>(\kappa_c = 0.1571)</td>
<td>0</td>
<td>0.938(9)</td>
<td></td>
</tr>
<tr>
<td>Unquenched* (24^3 \times 40), (\beta = 5.6), (a^{-1} = 2.56(10)) GeV ((a = 0.08 \text{ fm}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>0.1575</td>
<td>0.691(8)</td>
<td>1.485(18)</td>
</tr>
<tr>
<td>157</td>
<td>0.1580</td>
<td>0.509(8)</td>
<td>1.280(26)</td>
</tr>
<tr>
<td>Unquenched† (24^3 \times 32), (\beta = 5.6), (a^{-1} = 2.56(10)) GeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.15825</td>
<td>0.384(8)</td>
<td>1.083(18)</td>
</tr>
<tr>
<td>(\kappa_c = 0.1585)</td>
<td>0</td>
<td>0.938(33)</td>
<td></td>
</tr>
</tbody>
</table>

Hybrid Scheme

\(a^{-1} = 1.58 \) GeV \((a = 0.125 \text{ fm})\) from MILC collaboration

<table>
<thead>
<tr>
<th>Number of Conf.</th>
<th>Volume</th>
<th>((am_{u,d})_{\text{sea}})</th>
<th>((am_s)_{\text{sea}})</th>
<th>((am_q)_{\text{DW}})</th>
<th>(m_\pi_{\text{DW}}) (GeV)</th>
<th>(m_N) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>(20^3 \times 64)</td>
<td>0.03</td>
<td>0.05</td>
<td>0.0478</td>
<td>0.589(2)</td>
<td>1.392(9)</td>
</tr>
<tr>
<td>198</td>
<td>(20^3 \times 64)</td>
<td>0.02</td>
<td>0.05</td>
<td>0.0313</td>
<td>0.501(4)</td>
<td>1.255(19)</td>
</tr>
<tr>
<td>100</td>
<td>(20^3 \times 64)</td>
<td>0.01</td>
<td>0.05</td>
<td>0.0138</td>
<td>0.362(5)</td>
<td>1.138(25)</td>
</tr>
<tr>
<td>150</td>
<td>(28^3 \times 64)</td>
<td>0.01</td>
<td>0.05</td>
<td>0.0138</td>
<td>0.354(2)</td>
<td>1.210(24)</td>
</tr>
</tbody>
</table>

For Wilson fermions we have consistency with determination of scale using the Sommer scale.

Magnetic dipole form factor

Ash parametrization: $G_m^* = \frac{1}{\sqrt{1 + \frac{Q^2}{(m_N+m_\Delta)^2}}} G_{M1}$, $Q^2 = -q^2$ is the momentum transfer squared.

Results in units of Bohr magnetons using the nucleon mass determined on the lattice.

Almost no dependence on quark mass for this range of pion masses.

Magnetic dipole form factor

Ash parametrization: \(G_m^* = \frac{1}{\sqrt{1 + \frac{Q^2}{(m_N + m_{\Delta})^2}}} G_{M1} \)

Results in units of Bohr magnetons using the nucleon mass determined on the lattice

Unquenching effects small for this range of pion masses

Magnetic dipole form factor

Ash parametrization: \(G_m^* = \frac{1}{\sqrt{1 + \frac{Q^2}{(m_N + m_\Delta)^2}}} G_{M1} \)

Results in the hybrid approach in agreement with results using Wilson fermions

\(\Rightarrow \) since these two lattice formulations have different systematics (e.g. different dependence on the lattice spacing \(a \)) agreement between them is non-trivial \(\rightarrow \) small lattice artifacts?

Results for magnetic dipole at the physical limit

What could explain the discrepancy with experiment?

Finite lattice spacing, finite volume??

C. Alexandrou
University of Cyprus
Check lattice calculation

- Increasing source-sink separation t_2 by 25% fm does not change the results. Good plateaus \rightarrow ground state dominance.
- Increasing volume from 2.5 fm to 3.5 fm does not change the results.
- For Wilson fermions we have $O(a)$ errors, in the hybrid approach we have $O(a^2)$ errors.
- Extrapolation to physical limit???
Check lattice calculation

- Increasing source-sink separation t_2 by 25% fm does not change the results. Good plateaus \rightarrow ground state dominance.
- Increasing volume from 2.5 fm to 3.5 fm does not change the results.
- For Wilson fermions we have $O(a)$ errors, in the hybrid approach we have $O(a^2)$ errors
- Extrapolation to physical limit???
Results for EMR and CMR

\[
R_{EM}(EMR) = - \frac{G_{E2}(q^2)}{G_{M1}(q^2)}, \quad R_{SM}(CMR) = - \frac{|\vec{q}|}{2m_\Delta} \frac{G_{C2}(q^2)}{G_{M1}(q^2)},
\]

in lab frame of the \(\Delta\).
Results for EMR and CMR

\[R_{EM}(EMR) = -\frac{G_{E2}(q^2)}{G_{M1}(q^2)}, \quad R_{SM}(CMR) = -\frac{\bar{q}}{2m_\Delta} \frac{G_{C2}(q^2)}{G_{M1}(q^2)}, \]

in lab frame of the \(\Delta \).
Results for EMR and CMR at physical limit

\[R_{EM}(\text{EMR}) = -\frac{G_{E2}(q^2)}{G_{M1}(q^2)}, \quad R_{SM}(\text{CMR}) = -\frac{|\vec{q}|}{2m_\Delta} \frac{G_{C2}(q^2)}{G_{M1}(q^2)}. \]

in lab frame of the \(\Delta \)
Extrapolation in m_{π}^2

- We used a linear extrapolation in order to approach the physical limit.
- Calculation within a chiral effective-field theory, using an expansion where $m_\Delta - m_N \sim \mathcal{O}(\delta)$ and $m_\pi / m_N \sim \mathcal{O}(\delta^2)$, has shown strong dependence on m_π. Only done at the lowest Q^2.

*V. Pascalutsa and M. Vanderhaeghen PRL 95 (2005) 232001
Any operator can be inserted at $t_1 \rightarrow$ with no additional inversions we can evaluate the N-N and N-\(\Delta\) matrix elements for any operator.

- **Vector current:** $j_\mu = \bar{\psi} \gamma_\mu \psi$
- **Pseudoscalar current:** $P^a = \bar{\psi} i \gamma_5 \frac{\tau^a}{2} \psi$
- **Axial current:** $A^a_\mu = \bar{\psi} \gamma_\mu \gamma_5 \frac{\tau^a}{2} \psi$: axial N to \(\Delta\) transition form factors and asymmetry to be measured at JLab (G0 experiment)

The optimal ratios: shortest possible time separation

$$R_\sigma (t_2, t_1; p', p; \Gamma; \mu) = \frac{\langle G^\Delta A^\mu_N (t_2, t_1; p', p; \Gamma) \rangle}{\langle G^{\Delta\Delta} (t_2; p'; \Gamma_4) \rangle} \left[\frac{\langle G^{NN} (t_2 - t_1; p; \Gamma_4) \rangle \langle G^{\Delta\Delta} (t_2; p'; \Gamma_4) \rangle \langle G^{NN} (t_2; p; \Gamma_4) \rangle}{\langle G^{\Delta\Delta} (t_2 - t_1; p'; \Gamma_4) \rangle \langle G^{NN} (t_2; p; \Gamma_4) \rangle} \right]^{1/2}$$

$$t_2 - t_1 \gg 1, t_1 \gg 1 \implies \prod_\sigma (p', p; \Gamma; \mu).$$

σ is the spin index of the Δ field and the projection matrices Γ are given

$$\Gamma_i = \frac{1}{2} \begin{pmatrix} \sigma_j & 0 \\ 0 & 0 \end{pmatrix}, \quad \Gamma_4 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
Any operator can be inserted at $t_1 \rightarrow$ with no additional inversions we can evaluate the N-N and N-Δ matrix elements for any operator.

- Vector current: $j_\mu = \bar{\psi} \gamma_\mu \psi$
- Pseudoscalar current: $P^a = \bar{\psi} i \gamma_5 \frac{\tau^a}{2} \psi$
- Axial current: $A^a_\mu = \bar{\psi} \gamma_\mu \gamma_5 \frac{\tau^a}{2} \psi$: axial N to Δ transition form factors and asymmetry to be measured at JLab (G0 experiment)

The optimal ratios: shortest possible time separation

$$R_\sigma(t_2, t_1; p', p; \Gamma; \mu) = \left[\frac{\langle G^{\Delta A\mu}_\sigma(t_2, t_1; p', p; \Gamma) \rangle}{\langle G^{\Delta\Delta}(t_2; p'; \Gamma_4) \rangle} \left[\frac{\langle G^{NN}(t_2 - t_1; p; \Gamma_4) \rangle}{\langle G^{\Delta\Delta}(t_2 - t_1; p'; \Gamma_4) \rangle} \frac{\langle G^{NN}(t_2; p; \Gamma_4) \rangle}{\langle G^{NN}(t_2; p; \Gamma_4) \rangle} \right]^{1/2} \right]$$

$$t_2 - t_1 \gg 1, t_1 \gg 1 \quad \Rightarrow \quad \Pi_\sigma(p', p; \Gamma; \mu).$$

σ is the spin index of the Δ field and the projection matrices Γ are given

$$\Gamma_i = \frac{1}{2} \begin{pmatrix} \sigma_i & 0 \\ 0 & 0 \end{pmatrix}, \quad \Gamma_4 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
Nucleon axial form factors

Decomposition of the nucleon weak matrix element:

\[\langle N(p')|A^3_\mu|N(p)\rangle = \, i \left(\frac{m_N^2}{E_N(p')E_N(p)} \right)^{1/2} \bar{u}(p') \left[G_A(q^2)\gamma_\mu\gamma_5 + \frac{q_\mu}{2m_N} G_P(q^2) \right]\, \frac{\tau^3}{2} u(p) \]

Lattice studies:
- \(G_A(0) \) LHP collaboration PRL 96 052001 (2006) and QCDSF PRD 74 094508 (2006)
- \(G_A(q^2) \) and \(G_P(q^2) \) K.F. Liu, S.J. Dong and T. Drapper, PRL 74 (1995) 2172 and LHP Collaboration, hep-lat/0610007.
N to Δ axial transition form factors*

Decomposition of the N to Δ weak matrix element in terms of four transition form factors†

$$
\langle \Delta(p')|A^\alpha_\mu|N(p)\rangle = \gamma \sqrt{\frac{2}{3}} \left(\frac{m_\Delta m_N}{E_\Delta (p') E_N (p)} \right)^{1/2} \bar{u}^\lambda (p') \left[\left(\frac{C_3^A}{m_N} \gamma^\nu + \frac{C_4^A}{m_N^2} p'^\nu \right) (g_{\lambda \nu} g_{\rho \nu} - g_{\lambda \rho} g_{\mu \nu}) q^\rho + C_5^A g_{\lambda \mu} + \frac{C_6^A}{m_N^2} q_\lambda q_\mu \right] u(p)
$$

† S.P. Wells (PAVI 2002); L. S. Alder, Ann. Phys. 50, 189 (1968); L. Smith, Phys. Rep. 3C(1972) 261
Parity violating asymmetry

- Under the assumptions that $C_3^A \sim 0$ and $C_4^A \ll C_5^A$ the parity violating asymmetry is proportional to the ratio C_5^A / C_3^V (analog of g_A / g_V) *
- C_3^V can be evaluated from the electromagnetic $N \to \Delta$ transition
- G0 collaboration plans to measure PV asymmetry at Jefferson Lab. **

- Non-zero when $Q^2 = 0$
- Increases with Q^2 up to about $Q^2 \sim 1.5 \text{ GeV}^2$
- Unquenching effects small for this range of quark masses
- Weak quark mass dependence → results can be taken as a physical prediction for the ratio

* N.C. Mukhopadhyay et al. NP A633(1998) 481
** S.P. Wells, PAVI 2002
PCAC

- Partial conservation of axial current:
 \[\partial_\mu A^a_\mu = f_\pi m^2_\pi \pi^a \]

- \(f_\pi \) determined from the two-point function
 \[< 0|A^a_\mu|\pi^b(p) > = iP_\mu \delta^{ab} f_\pi \]
 with \(f_\pi = 92 \text{ MeV} \).

- Axial Ward Identity:
 \[\partial_\mu A^a_\mu = 2m_qP^a \]
 \[\implies \text{relate the pion field } \pi^a \text{ with the pseudoscalar density:} \]
 \[\pi^a = \left(\frac{2m_qP^a}{f_\pi m^2_\pi} \right) \]

- Compute \(m_q \) from the matrix element:
 \[m_q = \frac{m_\pi < 0|A^a_0|\pi^a(0)>}{2 < 0|P^a|\pi^a(0)>} \]
Pion-nucleon (Δ) form factors

- Obtain coupling of the nucleon with the pion field using the relation

$$2m_q < N(p') | P^3 | N(p) > = \frac{f_\pi m^2 \pi G_{\pi NN}}{m^2_\pi - q^2} \bar{u}(p') i\gamma_5 u(p)$$

- Similarly for $G_{\pi N\Delta}$ we have

$$2m_q < \Delta(p') | P^3 | N(p) > = \sqrt{2} \frac{f_\pi m^2 \pi G_{\pi N\Delta}}{m^2_\pi - q^2} \bar{u}_\nu(p') \frac{q^\nu}{2m_N} u(p)$$

- PCAC relates axial form factors G_A and G_ρ with the coupling constant $G_{\pi NN}$ and equivalently C_A^5 and C_A^6 with $G_{\pi N\Delta}$

\implies Goldberger Treiman relations (GTR)
Pion-nucleon (Δ) form factors

- Obtain coupling of the nucleon with the pion field using the relation

$$2m_q < N(p')|P^3|N(p) > = \frac{f_\pi m_\pi^2 G_{\pi NN}}{m_\pi^2 - q^2} \bar{u}(p') i\gamma_5 u(p)$$

- Similarly for $G_{\pi N\Delta}$ we have

$$2m_q < \Delta(p')|P^3|N(p) > = \sqrt{\frac{2}{3}} \frac{f_\pi m_\pi^2 G_{\pi N\Delta}}{m_\pi^2 - q^2} \bar{u}_\nu(p') \frac{q^\nu}{2m_N} u(p)$$

- PCAC relates axial form factors G_A and G_P with the coupling constant $G_{\pi NN}$ and equivalently C_{5}^{A} and C_{6}^{A} with $G_{\pi N\Delta}$

$$\implies \text{Goldberger Treiman relations (GTR)}$$
Pion-nucleon (Δ) form factors

- Obtain coupling of the nucleon with the pion field using the relation

$$2m_q < N(p') | P^3 | N(p) >= \frac{f_\pi m_\pi^2 G_{\pi NN}}{m_\pi^2 - q^2} \bar{u}(p') i\gamma_5 u(p)$$

- Similarly for $G_{\pi N\Delta}$ we have

$$2m_q < \Delta(p') | P^3 | N(p) >= \sqrt{\frac{2}{3}} \frac{f_\pi m_\pi^2 G_{\pi N\Delta}}{m_\pi^2 - q^2} \bar{u}_\nu(p') q^\nu \frac{q^\nu}{2m_N} u(p)$$

- PCAC relates axial form factors G_A and G_ρ with the coupling constant $G_{\pi NN}$ and equivalently C_5^A and C_6^A with $G_{\pi N\Delta}$

\implies Goldberger Treiman relations (GTR)
The Goldberger-Treiman relations

- Diagonal and non-diagonal GTR:

\[G_A(q^2) + \frac{q^2}{4m_N^2} G_p(q^2) = \frac{1}{2m_N} \frac{2G_{\pi NN}(q^2)f_\pi m_\pi^2}{m_\pi^2 - q^2} \]
\[C_5^A(q^2) + \frac{q^2}{m_N^2} C_6^A(q^2) = \frac{1}{2m_N} \frac{G_{\pi N\Delta}(q^2)f_\pi m_\pi^2}{m_\pi^2 - q^2} \]

- Assuming pion pole dominance for \(G_p \) and \(C_6^A \):

\[\frac{1}{2m_N} G_p(q^2) \sim \frac{2G_A(q^2)}{m_\pi^2 - q^2} \sim \frac{2G_{\pi NN}(q^2)f_\pi}{m_\pi^2 - q^2} \]
\[\frac{1}{m_N^2} C_6^A(q^2) \sim \frac{C_5^A(q^2)}{m_\pi^2 - q^2} \sim \frac{1}{2m_N} \frac{G_{\pi N\Delta}(q^2)f_\pi}{m_\pi^2 - q^2} \]

\[\implies \text{GTR: } G_{\pi NN}f_\pi = m_N G_A \text{ and } G_{\pi N\Delta}f_\pi = 2m_N C_5^A \]
Advantages of taking ratios:

- Renormalization constants cancel
- Weaker dependence on quark mass
- Requires no knowledge of m_q which can have large lattice artifacts
- Finite volume and lattice spacing effects?
The ratio $G_{\pi N\Delta}/G_{\pi NN}$ comes out independent of q^2 and quark mass. Furthermore the value of 1.6 is what is expected.

The ratio $8C^A_6/G_p \sim 1.6 \sim G_{\pi N\Delta}/G_{\pi NN} \implies$ pion pole dominance:

$$\frac{1}{2m_N}G_p \sim \frac{2G_{\pi NN}f_\pi}{m_\pi^2 - q^2} \quad \frac{1}{m_N^2}C^A_6 \sim \frac{1}{2m_N}\frac{G_{\pi N\Delta}f_\pi}{m_\pi^2 - q^2}$$
Ratios of $G_{\pi NN}$ and $G_{\pi N\Delta}$

The ratio $G_{\pi N\Delta} / G_{\pi NN}$ comes out independent of q^2 and quark mass. Furthermore the value of 1.6 is what is expected.

The ratio $8C_A^6 / G_P \sim 1.6 \sim G_{\pi N\Delta} / G_{\pi NN} \implies$ pion pole dominance

The ratio $2C_A^5 / G_A \sim 1.6 \sim G_{\pi N\Delta} / G_{\pi NN} \implies$ imply the Goldberger-Treiman relations with the assumption of pole dominance
Results for the Goldberger-Treiman relation

Ratio of non-diagonal to diagonal GTR

Ratio is unity as expected but...
Pion pole dominance

- Pion dominance: $G_P/G_A = 4m_N^2/(Q^2 + m_N^2)$ and $C_A^6/C_A^5 = m_N^2/(Q^2 + m_N^2)$ → ratios should be described by the dashed lines.
- Solid curves are fits to a monopole $g_0/(Q^2 + m_N^2)$. Fit yields $m > m_\pi$.
Pion pole dominance

- Pion dominance: $\frac{G_P}{G_A} = \frac{4m_N^2}{Q^2 + m_N^2}$ and $\frac{C_A^6}{C_S^5} = \frac{m_N^2}{Q^2 + m_N^2}$
 - Ratios should be described by the dashed lines.
- Solid curves are fits to a monopole $\frac{g_0}{Q^2 + m^2}$. Fit yields $m > m_\pi$.
- Dynamical QCD results in hybrid approach higher at small Q^2.
- For the nucleon form factors results in the hybrid approach are by the LHP collaboration (Thanks J. Negele).
Motivation
Lattice Techniques
N to Δ electromagnetic form factors
N to Δ axial form factors
Conclusions

Q^2-dependence of G_A and C_5^A

- Fit: G_A and C_5^A to a dipole $g_0/(\frac{Q^2}{m_A^2} + 1)^2$ as done for experimental data. Note that a good description is also provided by an exponential $\tilde{g}_0 e^{-Q^2/\tilde{m}_A^2}$.

C. Alexandrou
University of Cyprus
Q^2-dependence of G_A and C_5^A

- Hybrid results on G_A from LHP collaboration (Thanks: J. Negele).
- Dynamical QCD results in the hybrid approach deviate at smallest pion mass at low Q^2.

C. Alexandrou
University of Cyprus
Hybrid results on G_A from LHP collaboration (Thanks: J. Negele).

Lattice results in the hybrid approach show deviations at low Q^2.
Motivation
Lattice Techniques
\(N \) to \(\Delta \) electromagnetic form factors
\(N \) to \(\Delta \) axial form factors
Conclusions

Renormalized quark mass

- **Compute** \(m_q \) from the matrix element:
 \[
 m_q = \frac{m_\pi \langle 0 | A^a_\pi^a(0) | 0 \rangle}{2 \langle 0 | P^a_\pi^a(0) | 0 \rangle}
 \]
- **Needed for the extraction of the strong coupling constants**
- **Good plateaus lead to accurate determination of the quark mass.**

C. Alexandrou
University of Cyprus
Pion pole dominance

For pole dominance:

\[G_{\pi NN}^* \equiv \frac{G_{\pi NN}}{1 + Q^2/m_{\pi}^2} = G_p \frac{2m_{\pi}^2}{m_N f_{\pi}} \]

\[G_{\pi N\Delta}^* \equiv \frac{G_{\pi N\Delta}}{1 + Q^2/m_{\pi}^2} = C_6^A \frac{m_{\pi}^2}{4m_N f_{\pi}} \]

Well satisfied
Curves are obtained using:

- Red dash curve:

\[
G_{\pi NN}(Q^2) = G_A(Q^2) \frac{m_N}{f_\pi}
\]

\[
G_{\pi N\Delta}(Q^2) = C_5^A(Q^2) \frac{2m_N}{f_\pi}
\]

Experimental value: \(G_{\pi NN}(0) = 13.21(11) \)

\[\Rightarrow \] lattice results underestimate \(G_{\pi NN} \) as \(Q^2 \rightarrow 0 \)

- Blue dotted line:

\[
G_{\pi NN}(Q^2) = a \left(1 - \Delta \frac{Q^2}{m^2_\pi} \right),
\]

\[
G_{\pi N\Delta}(Q^2) = 1.6 G_{\pi NN}(Q^2)
\]

with \(a, \Delta \) fit parameters.
We find \(a \sim 70\% \) what expected and \(\Delta \sim 5\% \) at the lightest quenched mass.
Conclusions

- Calculation of Vector, Axial vector and Pseudoscalar form factors in the N to Δ in the quenched approximation + two-flavors of dynamical Wilson fermions + Hybrid scheme.

- Ratios of form factors as expected:
 - quadrupole to dipole ratios EMR and CMR
 - ratios of axial form factors
 - ratios of pion coupling constants $G_{πNΔ}$ and $G_{πNN}$

- Predict the ratio C_5^A / C_3^V as a function of Q^2 and hence the leading contribution to the the parity violating asymmetry.

- Deviations from experiment seen for the dipole N-Δ transition form factor G_m^* and the values of $G_{πNN}$ and $G_{πNΔ}$ in the limit $Q^2 → 0$.

- Check finite $a, m_π → 140$ MeV and renormalized quark mass evaluated using AWI.
Conclusions

- Calculation of Vector, Axial vector and Pseudoscalar form factors in the N to Δ in the quenched approximation + two-flavors of dynamical Wilson fermions + Hybrid scheme.

- Ratios of form factors as expected:
 - quadrupole to dipole ratios EMR and CMR
 - ratios of axial form factors
 - ratios of pion coupling constants $G_{\pi NN}$ and $G_{\pi N\Delta}$

- Predict the ratio C_5^A / C_3^V as a function of Q^2 and hence the leading contribution to the the parity violating asymmetry.

- Deviations from experiment seen for the dipole N-Δ transition form factor G_m^* and the values of $G_{\pi NN}$ and $G_{\pi N\Delta}$ in the limit $Q^2 \rightarrow 0$.

- Check finite $a, m_\pi \rightarrow 140$ MeV and renormalized quark mass evaluated using AWI.
Conclusions

- Calculation of Vector, Axial vector and Pseudoscalar form factors in the N to Δ in the quenched approximation + two-flavors of dynamical Wilson fermions + Hybrid scheme.

- Ratios of form factors as expected:
 - quadrupole to dipole ratios EMR and CMR
 - ratios of axial form factors
 - ratios of pion coupling constants $G_{\pi N\Delta}$ and $G_{\pi NN}$

- Predict the ratio C_5^A/C_3^V as a function of Q^2 and hence the leading contribution to the the parity violating asymmetry.

- Deviations from experiment seen for the dipole N-Δ transition form factor G_m^* and the values of $G_{\pi NN}$ and $G_{\pi N\Delta}$ in the limit $Q^2 \to 0$.

- Check finite $a, m_\pi \to 140$ MeV and renormalized quark mass evaluated using AWI.
Conclusions

- Calculation of Vector, Axial vector and Pseudoscalar form factors in the N to Δ in the quenched approximation + two-flavors of dynamical Wilson fermions + Hybrid scheme.

- Ratios of form factors as expected:
 - quadrupole to dipole ratios EMR and CMR
 - ratios of axial form factors
 - ratios of pion coupling constants $G_{\pi N\Delta}$ and $G_{\pi NN}$

- Predict the ratio C_5^A / C_3^V as a function of Q^2 and hence the leading contribution to the parity violating asymmetry.

- Deviations from experiment seen for the dipole N-Δ transition form factor G_m^{*} and the values of $G_{\pi NN}$ and $G_{\pi N\Delta}$ in the limit $Q^2 \rightarrow 0$.

- Check finite $a, m_\pi \rightarrow 140$ MeV and renormalized quark mass evaluated using AWI.
Goldberger Treiman relations

Ratios: $G_{\pi NN}f_{\pi}/m_NG_A$ and $G_{\pi N\Delta}f_{\pi}/2m_NC_5^A$

Deviations decrease as q^2 increases

\implies axial form factors G_A and C_5^A have different Q^2 dependence at low Q^2.
$G_{\pi NN}$ and $G_{\pi N\Delta}$ in the quenched theory

Curves are fits to

$$c_0(Q^2 + m_{\pi}^2)
\frac{(Q^2/m_A^2 + 1)^2(Q^2 + m^2)}{(Q^2/m_A^2 + 1)^2(Q^2 + m^2)}$$

at the smallest pion mass.

The axial mass m_A is determined from fitting G_A or C_A^A.

m from fitting the ratio of G_p/G_A or C_A^6/C_A^5.

c_0 is fitted to the coupling constants $G_{\pi NN}$ or $G_{\pi N\Delta}$.
Comparison with results using Domain wall fermions

LHPC/MILC *:

- Hybrid calculation over a range of pion masses using 350, 564, 657 and 270 configurations.
- Lattice spacing: $q\bar{q}$ potential for domain wall fermions and from the nucleon mass at the chiral limit for Wilson fermions.
- Results using and DWF are in agreement.
- This agreement is not trivial since these lattice formulations have different lattice artifacts.

* Thanks J. W. Negele for the DWF results

C. Alexandrou
University of Cyprus
Check lattice calculation

Good plateaus → ground state dominance