Transverse SSA Measured at RHIC

Jan Balewski, IUCF Exclusive Reactions

May 21-24, 2007 Jefferson Lab

Where does the proton's spin come from?

p is made of 2 u and 1d quark

 $S = \frac{1}{2} = \Sigma S_{q}$

Explains magnetic moment of baryon octet

BUT partons have an x distribution and there are sea quarks and gluons

Check via electron scattering and find quarks carry only ~1/3 of the proton's spin!

 $1/_{2} = 1/_{2} \Delta \Sigma + \Delta G + (L_{q} + L_{g})$ Jets, pions, ALL Di-

Di-jets, Sivers A_N

Transverse spin physics

Basic, naïve QCD (leading-twist, zero quark masses) predicts: $A_N \propto \frac{m_q}{\sqrt{s}} = 0$

Experiments: E704(91), AGS(99), STAR(02) \rightarrow A_N is large

Study of transverse spin effects:

• Qui and Sterman (Initial-state twist-3), Koike (final-state twist-3)

\rightarrow Quark & gluon field interference

- Sivers: k_T in initial state correlates w/ proton spin, ISI and/or FSI is needed

 $\delta q_i(x,Q^2)$

 \rightarrow depends on orbital momentum

• Collins: kT in final state correlates w/ spin of quark

→ depends on transversity

Fundamental transverse spin sum rule:

$$\frac{1}{2} = \frac{1}{2} \sum_{i=q,\overline{q}} \int dx \, \delta q_i \left(x, Q^2 \right) + \sum_{i=q,\overline{q},g}$$

3

RHIC - First Polarized pp Collider

Luminosity and polarization performance

Overview of performance parameters

RHIC RUN	√s [GeV]	L _{recorded} [pb ⁻¹] (Transverse)	L _{recorded} [pb ⁻¹] (Longitudinal)	Polarization [%]
RUN 2	200	0.15	0.3	15
RUN 3	200	0.25	0.3	30
RUN 4	200	0	0.4	40-45
RUN 5	200	0.1	3.1	45-50
RUN 6	200	3.4/6.8	8.5	60

luminosity

SPIN2006, 17th International Spin Physics Symposium Kyoto, Japan, October 02-07, 2006

8

Bernd Surrow

Transverse SSA from RHIC

RHIC pp Absolute Cross Section Results Confirm Applicability of pQCD

pQCD works! Absolute cross sections for many channels -- $p+p \rightarrow \pi^0+X$, jet + X, $\gamma + X$ at $\sqrt{s} = 200 \text{ GeV} - \text{are well reproduced in}$ NLO pQCD calcs. down to $p_{\tau} \sim \text{few GeV/c.}$

Ш

BRAHMS measured A_N √s=62.4 GeV and 200 GeV
Large xF dependent SSAs seen for pions and kaons
Collinear factorization and (NLO) pQCD describe unpolarized cross-section at RHIC in wide kinematic region

BRAHMS Transverse SSA

•TMD PDF (Sivers function) alone cannot describe polarized and unpolarized data

•Gluonic degree of freedom (Twist-3) is signicantly responsible for the large ${\sf A}_{\sf N}$

•Sea quark contributions not well understood: $A_N(K^{\pm}), A_N(p)$

J.H.Lee, SPIN06

Phenix

Transverse SSA from RHIC

Inclusive Single Spin Asymmetries

P = 15% in 2002, P = 47% in 2005

polarization scaling uncertainty: 30%⁽²⁰⁰²⁾, ~ 20%⁽²⁰⁰⁵⁾

residual polarization in *unpolarized* beam: < 10% and small A_N

helps constrain gluon Sivers:

Anselmino et al., PRD74:094011 (2006)

K.O. Eyser --- DIS 2007

Transverse Spin Phenomena at PHENIX

Heavy Flavor

Phenix

K.O. Eyser --- DIS 2007

J/Ψ di-muon decay: muon spectrometers

Motivation for $pp \rightarrow Di$ -Jet Measurement

➢ HERMES transverse spin SIDIS asymmetries ⇒ u and d quark Sivers functions of opposite sign, different magnitude.

> Sivers effect in pp \Rightarrow spin-dependent sideways boost to di-jets, suggested by Boer & Vogelsang (PRD 69, 094025 (2004))

parton $k_T^x \leftarrow$

> Both beams polarized, $x^{+z} \neq x^{-z} \Rightarrow$ can distinguish q vs. g Sivers effects.

> Do we observe q Sivers consistent with HERMES? Tests universality.

First direct measurement of gluon Sivers effects.

Transverse SSA from RHIC

Colliding beam

proton spin

 $A_{_N} \propto \vec{p} \cdot \left(\vec{k}^{\perp} \times \vec{S}_T \right)$

STAR Results vs. Di-Jet Pseudorapidity Sum

STAR: Forward Pions $A_N(p_T)$ at $x_F > 0.4$

- more precise measurements
- consistent with the previous runs in the overlapping p_{T} region
- jet-like events \rightarrow can discriminate Collins and Sivers A_N

residual x_F-dependence? $\rightarrow A_N(x_F, p_T)$ mapping in planed

L.Nogach, SPIN06 hep-ex/0612030

Transverse SSA from RHIC

Summary

Transverse SSA Measured at RHIC

- Large A_N at forward rapidity (Brahms, STAR)
- Consistent w/ zero A_N at mid-rapidity (Phoenix, STAR)
 - \rightarrow related to Sivers A_N

Implication for theory

•Measured in p+p quark Sivers A_N differs from non-zero HERMES results for $\pi^+ \rightarrow$ universality of Sivers fcn.?

- Recent theory development for p+p:
- u & d-quark Sivers fcn cancel
 - Bomhof, Mulders, Vogelsang, Yuan, hep-ph/0701277
- factorization is violated for back-to-back hadrons Collins,Qiu, hep-ph/0705.2141

Future RHIC plans:

- jet back-to-back → Sivers fcn
- two hadrons correlations \rightarrow Sivers and Collins \rightarrow transversity

Backup

Separating Sivers and Collins effects

Sivers mechanism: asymmetry in the forward jet or γ production

Collins mechanism: asymmetry in the forward jet fragmentation

Need to go beyond π^0 detection to **jets** and **direct photons**

STAR

Luminosity 3*10³¹/cm²/s Di-Jet Rate to tape: 15 Hz

Transverse SSA from RHIC

RHIC pp Absolute Cross Section Results at Mid-Rapidity...

STAR: Forward Pion Detector ++

TPC: -1.0 < η < 1.0 FTPC: 2.8 < $|\eta|$ < 3.8 BBC : 2.2 < $|\eta|$ < 5.0 EEMC: 1 < η < 2 BEMC: -1 < η < 1 FPD++/FPD: η ~ 3.3/-3.7

FPD++: engineering test of the Forward Meson Spectrometer

L.Nogach, SPIN06

STAR pp $\rightarrow \pi^0 X$, $\sqrt{s=200 \text{ GeV}}$ High rapidity

