Exclusive Processes and AdS/QCD

Stan Brodsky, SLAC
J1ab Exclusive Processes
May 22, 2007

QCD Lagrangian

Yang-Mills Gauge Principle:
Invariance under Color Rotation and Phase Change at Every Point of Space and Time

> Dimensionless Coupling Renormalizable Asymptotic Freedom Color Confinement

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Equation for Atomic Physics
- AdS/QCD Holographíc Model

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z
in collaboration with Guy de Teramond

> Holography:
> Map AdS/CFT to $3+1$ LF Theory

Relativistic radial equation: Frame Independent

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Effective conformal

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

Truncated Space Harmonic Oscillator
JLab
May 22, 2007
Exclusive Processes \& AdS/QCD

Light meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$
Guy de Teramond SJB
$A d S / C F T:$ Anti-de Sitter Space \leftrightarrow Conformal Field Theory

Maldacena:

$\operatorname{Map} A d S_{5} \times S_{5}$ to conformal $N=4$ SUSY

- QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- Conformal window: $\alpha_{s}\left(Q^{2}\right) \simeq$ const at small Q^{2}
- Use mathematical mapping of the conformal group $\operatorname{SO}(4,2)$ to AdS5 space
- Evidence for IR Fixed Point

Conformal window Infrared fixed-point

$$
\beta\left(Q^{2}\right)=\frac{d \alpha_{s}\left(Q^{2}\right)}{d \log Q^{2}} \rightarrow 0
$$

JLab
Мау 22, 2007

Exclusive Processes \& AdS/QCD
9

Stan Brodsky, SLAC

Define QCD Coupling from observable

$$
\begin{gathered}
R_{e^{+} e^{-} \rightarrow X}(s) \equiv 3 \Sigma_{q} e_{q}^{2}\left[1+\frac{\alpha_{R}(s)}{\pi}\right] \\
\Gamma(\tau \rightarrow X e \nu)\left(m_{\tau}^{2}\right) \equiv \Gamma_{0}(\tau \rightarrow u \overline{d e} \nu) \times\left[1+\frac{\alpha_{\tau}\left(m_{\tau}^{2}\right)}{\pi}\right]
\end{gathered}
$$

Effective Charges: analytic at quark mass thresholds, finite at small momenta Deur et al: Effective Charge from Bjorken Sum Rule

QCD Effective Coupling from

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

JLab
May 22, 2007

$$
\begin{gathered}
\mathcal{M}_{e e \rightarrow e e}(++;++)=\frac{8 \pi s}{t} \alpha(t)+\frac{8 \pi s}{u} \alpha(u) \\
\xrightarrow{\alpha} \\
\alpha(t)
\end{gathered}
$$

Gell Mann-Low Effective Charge for QED

IR Fixed-Point for QED!

$$
\begin{aligned}
& \text { QED } \\
& \text { vacuum } \\
& \text { polarization } \\
& t=-Q^{2}<0 \\
& \text { (t spacelike) } \\
& \Pi\left(Q^{2}\right)=\frac{\alpha(0)}{3 \pi}\left[\frac{5}{3}-\frac{4 m^{2}}{Q^{2}}-\left(1-\frac{2 m^{2}}{Q^{2}}\right) \sqrt{1+\frac{4 m^{2}}{Q^{2}}} \log \right. \\
& \Pi\left(Q^{2}\right)=\frac{\alpha(0)}{3 \pi} \frac{\log Q^{2}}{m^{2}} \quad Q^{2} \gg 4 M^{2} \\
& \beta=\frac{d\left(\frac{\alpha}{4 \pi}\right)}{d \log Q^{2}}=\frac{4}{3}\left(\frac{\alpha}{4 \pi}\right)^{2} n_{\ell}>0 \quad \alpha(t)=\frac{\alpha(0)}{1-\Pi(t)} \\
& \Pi\left(Q^{2}\right)=\frac{\alpha(0)}{15 \pi} \frac{Q^{2}}{m^{2}} \quad Q^{2} \ll 4 M^{2} \\
& \text { Serber-Uehling } \\
& \beta \propto \frac{Q^{2}}{m^{2}} \quad \text { vanishes at small momentum transfer }
\end{aligned}
$$

Constituent Counting Rules

$$
\sim \begin{aligned}
& \frac{F\left(\theta_{\mathrm{cm}}\right)}{s^{[n} \mathrm{tot}^{-2]}} \quad s=E_{\mathrm{cm}}^{2} \\
& F_{H}\left(Q^{2}\right) \sim\left[\frac{1}{Q^{2}}\right]^{n_{H}-1}
\end{aligned}
$$

$$
n_{t o t}=n_{A}+n_{B}+n_{C}+n_{D}
$$

Fixed t / s or $\cos \theta_{c m}$
Farrar \& sjb; Matveev, Muradyan, Tavkhelidze

Conformal symmetry and PQCD predict leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

Nonperturbative derivation from AdS/CFT
Polchinski \& Strassler, de Teramond and sjb; Grigorian and Radyushkin
Many new J-Lab (12), J-PARC, GSI, Belle, Babar tests JLab Exclusive Processes \& AdS/QCD

Leading-Twist PQCD Factorization for form factors, exclusive amplitudes Lepage, sjb

baryon distribution amplitude

$M=\int \Pi d x_{i} d y_{i} \phi_{F}\left(x_{i}, \widetilde{Q}\right) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \times \dot{q}_{I}\left(y_{i}, \widetilde{Q}\right)$

If $\alpha_{s}\left(\widetilde{Q}^{2}\right) \simeq$ constant
$Q^{4} F_{1}\left(Q^{2}\right) \simeq \mathrm{constant}$

JLab May 22, 2007

Exclusive Processes \& AdS/QCD 16

Hadron Distribution Amplitudes

$$
\phi\left(x_{i}, Q\right) \equiv \Pi_{i=1}^{n-1} \int^{Q} d^{2} \vec{k}_{\perp} \psi_{n}\left(x_{i}, \vec{k}_{\perp i}\right)
$$

- Fundamental measure of valence wavefunction
- Gauge Invariant (includes Wilson line)
- Evolution Equations, OPE

ERBL

- Conformal Expansion
- Hadronic Input in Factorization Theorems

Conformal behavior: $Q^{2} F_{\pi}\left(Q^{2}\right) \rightarrow$ const
$Q^{4} F_{1}\left(Q^{2}\right) \rightarrow$ const

Determination of the Charged Pion Form Factor at Q2=1.60 and 2.45 ($\mathrm{GeV} / \mathrm{c}$)2.
By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp. e-Print Archive: nucl-ex/0607005
G. Huber

Generalized parton distributions from nucleon form-factor data. M. Diehl (DESY), Th. Feldmann (CERN), R. Jakob, P. Kroll (Wuppertal U.) .

DESY-04-146, CERN-PH-04-154, WUB-04-08, Aug 2004. 68pp.
Published in Eur.Phys.J.C39:1-39,2005
e-Print Archive: hep-ph/0408173

Features of Hard Exclusive Processes in PQCD

- Factorization of perturbative hard scattering subprocess amplitude and nonperturbative distribution amplitudes

$$
M=\int T_{H} \times \Pi \phi_{i}
$$

- Dimensional counting rules reflect conformal invariance: $M \sim \frac{f\left(\theta_{C M}\right)}{Q^{N_{\text {tot }}-4}}$
- Hadron helicity conservation: $\sum_{i n i t i a l} \lambda_{i}^{H}=\sum_{f i n a l} \lambda_{j}^{H} \quad$ Lepage, sjb
- Color transparency Mueller, sjb
- Hidden color Ji, Lepage, sjb
- Evolution of Distribution Amplitudes Lepage, sjb; Efremov, Radyushkin

Test of PQCD Scaling

Constituent counting rules

Farrar, sjb; Muradyan, Matveev, Tavkelidze

$$
\begin{aligned}
& \mathrm{s}^{7} d \sigma / d t\left(\gamma p \rightarrow \pi^{+} n\right) \sim \text { const } \\
& \text { fixed } \theta_{C M} \text { scaling }
\end{aligned}
$$

PQCD and AdS/CFT:

$$
\begin{aligned}
& s_{\text {not }}-2 \frac{d \sigma}{d t}(A+B \rightarrow C+D)= \\
& \mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)
\end{aligned}
$$

$$
s^{7} \frac{d \sigma}{d t}\left(\gamma p \rightarrow \pi^{+} n\right)=F\left(\theta_{C M}\right)
$$

$$
n_{t o t}=1+3+2+3=9
$$

Conformat invariance

$$
\frac{d \sigma}{d t}(\gamma p \rightarrow M B)=\frac{F\left(\theta_{c m}\right)}{s^{7}}
$$

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

Deuteron Photodisintegration

JLab Exclusive Processes \& AdS/QCD

Check of CCR

Fit of do/dt data for the central angles and $P_{T} \geq 1.1 \mathrm{GeV} / \mathrm{c}$ with

$$
\mathrm{As}^{-11}
$$

For all but two of the fits

$$
x^{2} \leq 1.34
$$

- Better χ^{2} at 55° and 75° if different data sets are renormalized to each other
-No data at $P_{T} \geq 1.1 \mathrm{GeV} / \mathrm{c}$ at forward and backward angles
-Clear s ${ }^{-11}$ behaviour for last 3 points at 35°

Data consistent with CCR

JLab
May 22, 2007
Exclusive \mathbf{P}_{1}
P.Rossi et al, P.R.L. 94, 012301 (2005)

- Remarkable Test of Quark Counting Rules
- Deuteron Photo-Disintegration $\gamma \mathrm{d} \rightarrow \mathrm{np}$

$$
\begin{aligned}
& \frac{d \sigma}{d t}=\frac{F(t / s)}{s^{n} \text { tot }-2} \\
& n_{t o t}=1+6+3+3=13
\end{aligned}
$$

Scaling characteristic of scale-invariant theory at short distances

Conformal symmetry
Hidden color: $\quad \frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n)$ at high p_{T}

Fig. 5. Cross section for (a) $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$, (b) $\gamma \gamma \rightarrow K^{+} K^{-}$in the c.m. angular region $\left|\cos \theta^{*}\right|<0.6$ together with a W^{-6} dependence line derived from the fit of $s\left|R_{M}\right|$. (c) shows the cross section ratio. The solid line is the result of the fit for the data above 3 GeV . The errors indicated by short ticks are statistical only.

PQCD: $\frac{d \sigma}{d\left|\cos \theta^{*}\right|}\left(\gamma \gamma \rightarrow M^{+} M^{-}\right) \approx \frac{16 \pi \alpha^{2}}{s} \frac{\left|F_{M}(s)\right|^{2}}{\sin ^{4} \theta^{*}}$,

4. Angular dependence of the cross section, $\sigma_{0}^{-1} d \sigma / d\left|\cos \theta^{*}\right|$, for the $\pi^{+} \pi^{-}$(closed circles) and $K^{+} K^{-}$(open circles) processes. The curves are $1.227 \times \sin ^{-4} \theta^{*}$. The errors are statistical only.

Measurement of the $\gamma \gamma \rightarrow \pi^{+} \pi^{-}$and $\gamma \gamma \rightarrow K^{+} K^{-}$processes at energies of $2.4-4.1 \mathrm{GeV}$

JLab
May 22, 2007

Compton-Scattering Cross Section on the Proton at High Momentum Transfer

Power fall-off consistent with PQCD

Why do dimensional counting rules work so well?

- PQCD predicts log corrections from powers of $\boldsymbol{\alpha}_{\text {s }}$, logs, pinch contributions Lepage, sjb; Efremov, Radyushkin; Landshoff; Mueller, Duncan
- DSE: QCD coupling (mom scheme) has IR Fixed point Alkofer, Fischer, von Smekal et al.
- Lattice results show similar flat behavior Furui, Nakajima
- PQCD exclusive amplitudes dominated by integration regime where α_{s} is large and flat

JLab
May 22, 2007

Conformal symmetry: Template for QCD

- Take conformal symmetry as initial approximation; then correct for non-zero beta function and quark masses
- Eigensolutions of ERBL evolution equation for distribution amplitudes
V. Braun et al;

Frishman, Lepage, Sachrajda, sjb

- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Fix Renormalization Scale (BLM)
- Use AdS/CFT

Conformal Theories are invariant under the Poincare and conformal transformations with

$$
\mathbf{M}^{\mu \nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu}
$$

the generators of $\operatorname{SO}(4,2)$

SO $(4,2)$ has a mathematical representation on AdS_{5}

- Polchinski \& Strassler: AdS/CFT builds in conformal symmetry at short distances; counting rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide an approximate model of hadron structure with confinement at large distances, conformal behavior at short distances
- de Teramond, sjb: AdS/QCD Holographic Model: Initial "semiclassical" approximation to QCD. Predict light-quark hadron spectroscopy, form factors.
- Karch, Katz, Son, Stephanov: Harmonic Oscillator Confinement
- Mapping of AdS amplitudes to 3+ I Light-Front equations, wavefunctions
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing $\mathrm{H}^{\mathrm{LF}} \mathrm{QCD}^{\text {; variational methods }}$

Scale Transformations

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

5-Dimensional

- Anti-de Sitter
 Spacetime

Truncated AdS Space

4-Dimensional
Flat Spacetime (hologram)

AdS/CFT

- Use mapping of conformal group $\mathrm{SO}_{(4,2)}$ to AdS_{5}
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $\quad x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \quad z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry in interior $0<z<z_{0}$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances $\psi(z) \sim z^{\Delta}$ at $z \rightarrow 0$
- Truncated space simulates "bag" boundary conditions

$$
\psi\left(z_{0}\right)=0 \quad z_{0}=\frac{1}{\Lambda_{Q C D}}
$$

Identify hadron by its interpolating operator at z -- >o

of baryon

JLab	Exclusive Processes \& AdS/QCD	de Teramond, sjb
May 22, 2007	$\mathbf{3 7}$	Stan Brodsky, SLAC

$$
\Phi(\mathrm{z})=\mathrm{z}^{3 / 2} \phi(\mathrm{z})
$$

AdS Schrodinger Equation for bound state of two scalar constituents

$$
\left[-\frac{\mathrm{d}^{2}}{\mathrm{dz}^{2}}+\mathbf{V}(\mathrm{z})\right] \phi(\mathrm{z})=\mathbf{M}^{2} \phi(\mathrm{z})
$$

Truncated space

$$
\mathrm{V}(\mathrm{z})=-\frac{1-4 \mathrm{~L}^{2}}{4 \mathrm{z}^{2}} \quad \phi\left(\mathrm{z}=\mathrm{z}_{0}=\frac{1}{\Lambda_{\mathrm{c}}}\right)=0 .
$$

Alternative: Harmonic oscillator confinement

$$
\mathbf{V}(\mathrm{z})=-\frac{1-4 \mathrm{~L}^{2}}{4 \mathbf{z}^{2}}+\kappa^{4} \mathbf{z}^{2} \quad \text { Karch, et al. }
$$

Derived from variation of Action in AdS5

JLab
Мау 22, 2007

Exclusive Processes \& AdS/QCD

Stan Brodsky, SLAC

Match fall-off at small z to conformal twist dimension at short distances

- Pseudoscalar mesons: $\mathcal{O}_{3+L}=\bar{\psi} \gamma_{5} D_{\left\{\ell_{1} \ldots\right.} \ldots D_{\left.\ell_{m}\right\}} \psi \quad$ ($\Phi_{\mu}=0$ gauge).
- 4- d mass spectrum from boundary conditions on the normalizable string modes at $z=z_{0}$, $\Phi\left(x, z_{o}\right)=0$, given by the zeros of Bessel functions $\beta_{\alpha, k}: \mathcal{M}_{\alpha, k}=\beta_{\alpha, k} \Lambda_{Q C D}$
- Normalizable AdS modes $\Phi(z)$

Meson orbital and radial AdS modes for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$.

Light meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$
Guy de Teramond SJB

Baryon Spectrum

- Baryon: twist-three, dimension $\frac{9}{2}+L$

$$
\mathcal{O}_{\frac{9}{2}+L}=\psi D_{\left\{\ell_{1}\right.} \ldots D_{\ell_{q}} \psi D_{\ell_{q+1}} \ldots D_{\left.\ell_{m}\right\}} \psi, \quad L=\sum_{i=1}^{m} \ell_{i}
$$

Wave Equation: $\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-\mathcal{L}_{ \pm}^{2}+4\right] f_{ \pm}(z)=0$
with $\mathcal{L}_{+}=L+1, \mathcal{L}_{-}=L+2$, and solution

$$
\Psi(x, z)=C e^{-i P \cdot x} z^{2}\left[J_{1+L}(z \mathcal{M}) u_{+}(P)+J_{2+L}(z \mathcal{M}) u_{-}(P)\right]
$$

- 4- d mass spectrum $\Psi\left(x, z_{o}\right)^{ \pm}=0 \quad \Longrightarrow \quad$ parallel Regge trajectories for baryons !

$$
\mathcal{M}_{\alpha, k}^{+}=\beta_{\alpha, k} \Lambda_{Q C D}, \quad \mathcal{M}_{\alpha, k}^{-}=\beta_{\alpha+1, k} \Lambda_{Q C D}
$$

- Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

Prediction from AdS/QCD

Only one parameter!

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$. The 56 trajectory corresponds to L even $P=+$ states, and the $\mathbf{7 0}$ to L odd $P=-$ states.

Guy de Teramond SJB

- $S U(6)$ multiplet structure for N and Δ orbital states, including internal spin S and L.

\begin{tabular}{|c|c|c|c|}
\hline $S U(6)$ \& S \& L \& Baryon State

\hline 56 \& $\frac{3}{2}$ \& 0 \& $$
\begin{gathered}
N \frac{1}{2}^{+}(939) \\
\Delta \frac{3}{2}^{+}(1232)
\end{gathered}
$$

\hline 70 \& $\frac{1}{2}$
$\frac{3}{2}$
$\frac{1}{2}$ \& 1
1
1 \& $N \frac{1}{2}^{-}(1535){ }^{3} \frac{3}{2}^{-}(1520)$ $N \frac{1}{2}^{-}(1650) N \frac{3}{2}^{-}(1700) N \frac{5}{2}^{-}(1675)$ $\Delta \frac{1}{2}^{-}$(1620) $\Delta^{\frac{3}{2}}{ }^{-}$(1700)

\hline 56 \& 1
$\frac{1}{2}$
$\frac{3}{2}$ \& ${ }_{2}^{2}$ \& $$
\begin{gathered}
N^{2}+(1720) N \frac{5}{2}+(1680) \\
\Delta \frac{1}{2}^{+}(1910) \Delta \frac{3}{2}^{+}(1920) \Delta \frac{5}{2}^{+}(1905) \Delta \frac{7}{2}^{+}(1950)
\end{gathered}
$$

\hline 70 \& 1

$\frac{3}{2}$
$\frac{3}{2}$
$\frac{1}{2}$ \& 3
3
3 \&

\hline 56 \& $\frac{3}{2}$ \& 4 \& $$
\begin{array}{llll}
& N \frac{7}{2}^{+} & N \frac{9}{2}{ }^{+}(2220) \\
\Delta \frac{5}{2}^{+} & \Delta \frac{7}{2}^{+} & \Delta \frac{9}{2}^{+} & \Delta \frac{11}{2}{ }^{+}{ }^{(2420)}
\end{array}
$$

\hline 70 \& $\frac{3}{2}$ \& 5
5 \&

\hline
\end{tabular}

\mathcal{H} Olographic Harmonic Oscillator Model: Baryons

$$
\begin{array}{r}
(\alpha \Pi(\zeta)-\mathcal{M}) \psi(\zeta)=0, \\
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}-\kappa^{2} \zeta \gamma_{5}\right) \\
\Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta} \gamma_{5}+\kappa^{2} \zeta \gamma_{5}\right) \\
\left(H_{L F}-\mathcal{M}^{2}\right) \psi(\zeta)=0, \quad H_{L F}=\Pi^{\dagger} \Pi
\end{array}
$$

Uncoupled Schrodinger Equations
Harmonic Oscillator Potential!

Solution

$$
\begin{aligned}
& \left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 \nu^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2(\nu+1) \kappa^{2}+\mathcal{M}^{2}\right) \psi_{+}(\zeta)=0 \\
& \left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4(\nu+1)^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2 \nu \kappa^{2}+\mathcal{M}^{2}\right) \psi_{-}(\zeta)=0
\end{aligned}
$$

$$
\psi_{+}(\zeta) \sim z^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right)
$$

$$
\psi_{-}(\zeta) \sim z^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
$$

Same eigenvalue! $\quad \mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1)$

Boost Invariant 3+1 Light-Front Wave Equations
$J=0,1,1 / 2,3 / 2$ plus L
Hadron Spectra, Wavefunctions, Dynamics

Hadron Form Factors from AdS/CFT

- Propagation of external perturbation suppressed inside AdS. $J(Q, z)=z Q K_{1}(z Q)$
- At large Q^{2} the important integration region is $z \sim 1 / Q$.

$$
F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
$$

$$
\mathbf{J}(\mathbf{Q}, \mathbf{z}), \quad \boldsymbol{\Phi}(\mathbf{z})
$$

Polchinski, Strassler de Teramond, sjb

- Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}, \begin{gathered}
\text { Dimensional Quark Counting Rules: } \\
\text { General result from } \\
\text { AdS/CFT }
\end{gathered}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

$$
\begin{gathered}
F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z) . \\
\Phi(z)=\frac{\sqrt{2} \kappa}{R^{3 / 2}} z^{2} e^{-\kappa^{2} z^{2} / 2} . \quad J(Q, z)=z Q K_{1}(z Q) . \\
F\left(Q^{2}\right)=1+\frac{Q^{2}}{4 \kappa^{2}} \exp \left(\frac{Q^{2}}{4 \kappa^{2}}\right) E i\left(-\frac{Q^{2}}{4 \kappa^{2}}\right) \quad E i(-x)=\int_{\infty}^{x} e^{-t} \frac{d t}{t} . \\
\begin{array}{l}
\text { Space-likePion } \\
\text { Form Factor }
\end{array} \\
\kappa=0.4 \mathrm{GeV} \\
\Lambda_{\mathrm{QCD}}=0.2 \text { GeV. }
\end{gathered}
$$

Spacelike pion form factor from AdS/CFT

Data Compilation from Baldini, Kloe and Volmer
\qquad Harmonic Oscillator Confinement
Truncated Space Confinement
One parameter - set by pion decay constant

JLab
Мау 22, 2007

Exclusive Processes \& AdS/QCD 48
de Teramond, sjb Grigorian, Radyushkin

Spacelike and Timelike Pion form factor from AdS/CFT

Exclusive Processes \& AdS/QCD 49
G. de Teramond, sjb

Harmonic
Oscillator Confinement scale set by pion decay constant

$$
\kappa=0.38 \mathrm{GeV}
$$

Spacelike and Timelike Pion form factor from AdS/CFT

$$
F_{\pi}\left(q^{2}\right)
$$

G. de Teramond, sjb

Harmonic Oscillator
Confinement
$\kappa=0.38 \mathrm{GeV}$
Analytic continue to timelike momenta and introduce width $q^{2} \rightarrow q^{2}+i \epsilon \rightarrow q^{2}+i M \Gamma$

Fit to height, predict width

$$
\begin{gathered}
\Gamma_{\rho}=111 \mathrm{MeV} \\
\Gamma_{\rho}^{e x p}=150.3 \pm 1.6 \mathrm{MeV}
\end{gathered}
$$

Baryon Form Factors

- Coupling of the extended AdS mode with an external gauge field $A^{\mu}(x, z)$

$$
i g_{5} \int d^{4} x d z \sqrt{g} A_{\mu}(x, z) \bar{\Psi}(x, z) \gamma^{\mu} \Psi(x, z)
$$

where

$$
\begin{aligned}
& \Psi(x, z)=e^{-i P \cdot x}\left[\psi_{+}(z) u_{+}(P)+\psi_{-}(z) u_{-}(P)\right] \\
& \psi_{+}(z)=C z^{2} J_{1}(z M), \quad \psi_{-}(z)=C z^{2} J_{2}(z M)
\end{aligned}
$$

and

$$
\begin{gathered}
u(P)_{ \pm}=\frac{1 \pm \gamma_{5}}{2} u(P) \\
\psi_{+}(z) \equiv \psi^{\uparrow}(z), \quad \psi_{-}(z) \equiv \psi^{\downarrow}(z),
\end{gathered}
$$

the $\mathrm{LC} \pm$ spin projection along \hat{z}.

- Constant C determined by charge normalization:

$$
C=\frac{\sqrt{2} \Lambda_{\mathrm{QCD}}}{R^{3 / 2}\left[-J_{0}\left(\beta_{1,1}\right) J_{2}\left(\beta_{1,1}\right)\right]^{1 / 2}} .
$$

Nucleon Form Factors

- Consider the spin non-flip form factors in the infinite wall approximation

$$
\begin{aligned}
& F_{+}\left(Q^{2}\right)=g_{+} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
& F_{-}\left(Q^{2}\right)=g_{-} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{-}(z)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(z)$ and $\psi_{-}(z)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left[\left|\psi_{+}(z)\right|^{2}-\left|\psi_{-}(z)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Large Q power scaling: $F_{1}\left(Q^{2}\right) \rightarrow\left[1 / Q^{2}\right]^{2}$.
G. de Teramond, sjb $F_{1}^{p}\left(Q^{2}\right)$

Preliminary

$$
\kappa=0.424 \mathrm{GeV}
$$

$$
\Lambda=0.2 \mathrm{GeV}
$$

Current modified by metric

$$
F_{1}\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}^{\uparrow}(z) J(Q, z) \Phi_{I}^{\uparrow}(z)
$$

Dirac Neutron Form Factor

(Valence Approximation)

Prediction for $Q^{4} F_{1}^{n}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the hard wall approximation. Data analysis from Diehl (2005).

Hadronic Form Factor in Space and Time-Like Regions

- The form factor in AdS/QCD is the overlap of the normalizable modes dual to the incoming and outgoing hadron Φ_{I} and Φ_{F} and the non-normalizable mode J, dual to the external source (hadron spin σ):

$$
\begin{aligned}
F\left(Q^{2}\right)_{I \rightarrow F} & =R^{3+2 \sigma} \int_{0}^{\infty} \frac{d z}{z^{3+2 \sigma}} e^{(3+2 \sigma) A(z)} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \simeq R^{3+2 \sigma} \int_{0}^{z_{o}} \frac{d z}{z^{3+2 \sigma}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{aligned}
$$

- $J(Q, z)$ has the limiting value 1 at zero momentum transfer, $F(0)=1$, and has as boundary limit the external current, $A^{\mu}=\epsilon^{\mu} e^{i Q \cdot x} J(Q, z)$. Thus:

$$
\lim _{Q \rightarrow 0} J(Q, z)=\lim _{z \rightarrow 0} J(Q, z)=1
$$

- Solution to the AdS Wave equation with boundary conditions at $Q=0$ and $z \rightarrow 0$:

$$
J(Q, z)=z Q K_{1}(z Q)
$$

Polchinski and Strassler, hep-th/0209211; Hong, Yong and Strassler, hep-th/0409118.

Light-Front Wavefunctions

Fixed $\tau=t+z / c$

$$
P^{+}=P^{0}+P^{z}
$$

$$
P^{+}, \vec{P}_{\perp}
$$

Invariant under boosts! Independent of $\left.\mathcal{P}^{\mu}\right|^{\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}}$

Exclusive Processes \& AdS/QCD

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right)
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Antu-de Sitter Space

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks, $\quad \bar{s}(x) \neq s(x)$

$$
\bar{u}(x) \neq \bar{d}(x)
$$

Remarkable Features of

Hadron Structure

- Valence quarks carry less than half of the proton's spin and momentum
- Non-zero quark orbital angular momentum
- Asymmetric sea: $\bar{u}(x) \neq \bar{d}(x)$ relation to meson cloud
- Non-symmetric strange and antistrange sea $\bar{s}(x) \neq s(x)$
- Intrinsic charm and bottom at high x
- Hidden-Color Fock states of the Deuteron

Light-Front Representation of Two-Body Meson Form Factor

- Drell-Yan-West form factor

$$
F\left(q^{2}\right)=\sum_{q} e_{q} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{P^{\prime}}^{*}\left(x, \vec{k}_{\perp}-x \vec{q}_{\perp}\right) \psi_{P}\left(x, \vec{k}_{\perp}\right)
$$

- Fourrier transform to impact parameter space \vec{b}_{\perp}

$$
\psi\left(x, \vec{k}_{\perp}\right)=\sqrt{4 \pi} \int d^{2} \vec{b}_{\perp} e^{i \vec{b}_{\perp} \cdot \vec{k}_{\perp}} \widetilde{\psi}\left(x, \vec{b}_{\perp}\right)
$$

- Find $\left(b=\left|\vec{b}_{\perp}\right|\right)$:

$$
\begin{aligned}
F\left(q^{2}\right) & =\int_{0}^{1} d x \int d^{2} \vec{b}_{\perp} e^{i x \vec{b}_{\perp} \cdot \vec{q}_{\perp}}|\widetilde{\psi}(x, b)|^{2} \\
& =2 \pi \int_{0}^{1} d x \int_{0}^{\infty} b d b J_{0}(b q x)|\widetilde{\psi}(x, b)|^{2}
\end{aligned}
$$

Identical DYW andAdS5 Formulae: Two-parton case

- Change the integration variable $\zeta=\left|\vec{b}_{\perp}\right| \sqrt{x(1-x)}$

$$
F\left(Q^{2}\right)=2 \pi \int_{0}^{1} \frac{d x}{x(1-x)} \int_{0}^{\zeta_{\max }=\Lambda_{\mathrm{QCD}}^{-1}} \zeta d \zeta J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)|\widetilde{\psi}(x, \zeta)|^{2}
$$

- Compare with AdS form factor for arbitrary Q. Find:

$$
J(Q, \zeta)=\int_{0}^{1} d x J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)=\zeta Q K_{1}(\zeta Q), \quad \zeta \leftrightarrow \mathbf{z}
$$

the solution for the electromagnetic potential in AdS space, and

$$
\widetilde{\psi}\left(x, \vec{b}_{\perp}\right)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\sqrt{x(1-x)}\left|\vec{b}_{\perp}\right| \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
$$

the holographic LFWF for the valence Fock state of the pion $\psi_{\bar{q} q / \pi}$.
\square
The variable $\zeta, 0 \leq \zeta \leq \Lambda_{Q C D}^{-1}$, represents the scale of the invariant separation between quarks and is also the holographic coordinate $\zeta=z$!

$$
\begin{gathered}
L F(3+1) \quad A d S_{5} \\
\psi\left(x, \vec{b}_{\perp}\right)
\end{gathered}
$$

Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

N-parton case

- Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

$$
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \vec{\eta}_{\perp} e^{i \vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)
$$

- From DYW expression for the FF in transverse position space:

$$
\tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \vec{b}_{\perp j} \delta\left(1-x-\sum_{j=1}^{n-1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}-\vec{\eta}_{\perp}\right)\left|\psi_{n}\left(x_{j}, \vec{b}_{\perp j}\right)\right|^{2}
$$

- Compare with the the form factor in AdS space for arbitrary Q :

$$
F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} e^{3 A(z)} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z)
$$

- Holographic variable z is expressed in terms of the average transverse separation distance of the spectator constituents $\vec{\eta}=\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}$

> Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation Frame Independent

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2} \\
\hat{\imath}_{\vec{b}_{\perp}}
\end{gathered}
$$

G. de Teramond, sib

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}} \cdot \quad \text { Induced by }
$$

JLab May 22, 2007

Exclusive Processes \& AdS/QCD 64

Map AdS/CFT to 3+1 LF Theory

Effective radial equation:

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

General solution:

$$
\begin{gathered}
\widetilde{\psi}_{L, k}\left(x, \vec{b}_{\perp}\right)=B_{L, k} \sqrt{x(1-x)} \\
J_{L}\left(\sqrt{x(1-x)}\left|\vec{b}_{\perp}\right| \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
\end{gathered}
$$

JLab May 22, 2007

Exclusive Processes \& AdS/QCD

Prediction from AdS/CFT: Meson LFWF

JLab
May 22, 2007

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

Truncated Space

Harmonic Oscillator

AdS/CFT Prediction for Meson LFWF

Two-parton holographic LFWF in impact space $\widetilde{\psi}(x, \zeta)$ for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$: (a) ground state $L=0, k=1$; (b) first orbital exited state $L=1, k=1$; (c) first radial exited state $L=0, k=2$. The variable ζ is the holographic variable $z=\zeta=\left|b_{\perp}\right| \sqrt{x(1-x)}$.

$$
\widetilde{\psi}(x, \zeta)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\zeta \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(z \leq \Lambda_{\mathrm{QCD}}^{-1}\right)
$$

AdS/CFT Holographic Model
G. de Teramond SJB

The front form

3-dimensional photograph: meson LFWF at fixed LF Time

JLab May 22, 2007

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
& \xrightarrow[\underbrace{}_{\vec{b}_{\perp}}]{ }{ }_{(1-x)}^{x} \\
& \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \quad \text { Holographic Variable } \\
& -\frac{d}{d \zeta^{2}} \equiv \frac{k_{\perp}^{2}}{x(1-x)} \quad \text { LF Kinetic Energy in } \begin{array}{c}
\text { momentum space }
\end{array}
\end{aligned}
$$

Conjecture for mesons with massive quarks
$-\frac{d}{d \zeta^{2}} \rightarrow-\frac{d}{d \zeta^{2}}+\frac{m_{a}^{2}}{x}+\frac{m_{b}^{2}}{1-x} \equiv \frac{k_{\perp}^{2}+m_{a}^{2}}{x}+\frac{k_{\perp}^{2}+m_{b}^{2}}{1-x}$

AdS/QCD HO Model for Meson Form Factors
$\rho(x, Q)$

$\rho(b, Q)\left[\mathrm{GeV}^{2}\right]$

$Q=1,4,12 \mathrm{GeV} / \mathrm{c}$
$b \quad\left[\mathrm{GeV}^{-1}\right]$

$$
F\left(Q^{2}\right)=\int_{0}^{1} d x \int d b^{2} \kappa^{2} x(1-x) J_{0}(b Q(1-x)) e^{-\kappa^{2} x(1-x) b^{2}}
$$

$$
F\left(Q^{2}\right)=\int_{0}^{1} d x \rho(x, Q)=\int d b^{2} \rho(b, Q)
$$

Large \mathbf{Q} form factor derives from small b and small $\mathrm{I}-\mathbf{x}$

$$
x \rightarrow 1 \equiv k_{z} \rightarrow-\infty
$$

$\mathrm{Q}[\mathrm{GeV}]=4$

Q[GeV] = 8

Effective partonic ${ }^{0}$ density $2 \pi \rho\left(x, b_{\perp}, Q\right)$ in terms of the longitudinal momentum fraction x, the transverse relative impact variable b_{\perp} and momentum transfer Q for the harmonic oscillator model. The figure corresponds to $\kappa=0.67 \mathrm{GeV}$. The values of Q are $0,2,4$ and $8 \mathrm{GeV} / \mathrm{c}$. As Q increases the distribution becomes increasingly important near $x=1$ and $b_{\perp}=0$. At very large Q the distribution is peaked towards $b_{\perp}=0$.

Lepage, sjb
C. Ji, A. Pang, D. Robertson, sjb

Choi, Ji
$F_{\pi}\left(Q^{2}\right)=\int_{0}^{1} d x \phi_{\pi}(x) \int_{0}^{1} d y \phi_{\pi}(y) \frac{16 \pi C_{F} \alpha_{V}\left(Q_{V}\right)}{(1-x)(1-y) Q^{2}}$

AdS/CFT: Increases PQCD leading twist prediction for $F_{\pi}\left(Q^{2}\right)$ by factor $16 / 9$

Neutralpair angular distribution sensitive to AdS/CFT distribution!

$$
\phi_{\pi}^{A d S / Q C D}(x) \propto[x(1-x)]^{1 / 2}
$$

(a): $\phi_{\pi}(x) \propto x(1-x)$
(b): $\phi_{\pi}(x) \propto[x(1-x)]^{1 / 4}$
(c): $\phi_{\pi}(x) \propto \delta(x-1 / 2)$

Diffractive Dissociation of Pion into Quark Jets

> E79I Ashery et al.

$$
M \propto \frac{\partial^{2}}{\partial^{2} k_{\perp}} \psi_{\pi}\left(x, k_{\perp}\right)
$$

Measure Light-Front Wavefunction of Pion
Minimal momentum transfer to nucleus Nucleus left Intact!

Key Ingredients in E791 Experiment

Brodsky Mueller
Frankfurt Miller Strikman

Small color-dípole moment pion not absorbed;
interacts with each nucleon coherently QCD COLOR Transparency

JLab
May 22, 2007

Color Transparency

Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller, sjb

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets
- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

Measure pion LFWF in diffractive dijet production Confirmation of color transparency

```
A-Dependence results:
    \sigma\proptoA 
kt range (Gev/c)
1.25< kt < 1.5
1.5< kt < 2.0
    1.52\pm0.12
    1.45
                            Ashery E79I
2.0< k
    1.55\pm0.16
    1.60
    \alpha (incon.) = 0.70\pm0.1
```

Conventional Glauber Theory Ruled Out Factor of 7
!

Key Ingredients in Ashery Experiment

Gunion, Frankfurt, Mueller, Strikman, sjb Frankfurt, Miller, Strikman
Two-gluon exchange measures the second derivative of the pion light-front wavefunction

JLab May 22, 2007

Exclusive Processes \& AdS/QCD
8I
Stan Brodsky, SLAC

E791 Diffractive Di-Jet transverse momentum distribution

Two Components

High Transverse momentum dependence $k_{T}^{-6.5}$ consistent with $P Q C D$, ERBL Evolution

Gaussian component similar to AdS/CFT HO LFWF

Prediction from AdS/CFT: Meson LFWF

Narrowing of x distribution at higher jet transverse momentum
\mathbf{X} distribution of diffractive dijets from the platinum target for $1.25 \leq k_{t} \leq 1.5 \mathrm{GeV} / c$ (left) and for $1.5 \leq k_{t} \leq 2.5 \mathrm{GeV} / c$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Possibly two components: Nonperturbative (AdS/CFT) and $\quad \phi(x) \propto \sqrt{x(1-x)}$

Perturbative (ERBL)

 Evolution to asymptotic distribution
A Unified Description of Hadron Structure

JLab
May 22, 2007

Exclusive Processes \& AdS/QCD

Liaht-Front Wave Function Overlap Representation

DVCS/GPD

Diehl, Hwang, sjb, NPB596, 200I See also: Diehl, Feldmann, Jakob, Kroll

DGLAP region

ERBL

$\mathrm{N}=3$ VALENCE QUARK \Rightarrow Light-cone Constituent quark model
$\mathrm{N}=5$ VALENCE QUARK + QUARK SEA \Rightarrow Meson-Cloud model

Example of LFWF representation of GPDs ($\mathrm{n}=>\mathrm{n}$)

$$
\begin{aligned}
& \frac{1}{\sqrt{1-\zeta}} \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n \rightarrow n)}(x, \zeta, t) \\
&=(\sqrt{1-\zeta})^{2-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n} \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n} \vec{k}_{\perp j}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n)}^{\uparrow *}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
\end{aligned}
$$

where the arguments of the final-state wavefunction are given by

$$
\begin{array}{ll}
x_{1}^{\prime}=\frac{x_{1}-\zeta}{1-\zeta}, & \vec{k}_{\perp 1}^{\prime}=\vec{k}_{\perp 1}-\frac{1-x_{1}}{1-\zeta} \vec{\Delta}_{\perp} \\
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, & \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp}
\end{array} \text { for the struck quark, },
$$

Example of LFWF representation of GPDs $\left(\mathrm{n}+\mathrm{I}=>\mathrm{n}^{-\mathrm{I}}\right)$

Diehl, Hwang, sjb

$$
\begin{aligned}
& \frac{1}{\sqrt{1-\zeta}} \frac{\Delta^{1}-i \Delta^{2}}{2 M} E_{(n+1 \rightarrow n-1)}(x, \zeta, t) \\
&=(\sqrt{1-\zeta})^{3-n} \sum_{n, \lambda_{i}} \int \prod_{i=1}^{n+1} \frac{\mathrm{~d} x_{i} \mathrm{~d}^{2} \vec{k}_{\perp i}}{16 \pi^{3}} 16 \pi^{3} \delta\left(1-\sum_{j=1}^{n+1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n+1} \vec{k}_{\perp j}\right) \\
& \times 16 \pi^{3} \delta\left(x_{n+1}+x_{1}-\zeta\right) \delta^{(2)}\left(\vec{k}_{\perp n+1}+\vec{k}_{\perp 1}-\vec{\Delta}_{\perp}\right) \\
& \times \delta\left(x-x_{1}\right) \psi_{(n-1)}^{\uparrow *}\left(x_{i}^{\prime}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{(n+1)}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \delta_{\lambda_{1}-\lambda_{n+1}},
\end{aligned}
$$

where $i=2, \ldots, n$ label the $n-1$ spectator partons which appear in the final-state hadron wavefunction with

$$
x_{i}^{\prime}=\frac{x_{i}}{1-\zeta}, \quad \vec{k}_{\perp i}^{\prime}=\vec{k}_{\perp i}+\frac{x_{i}}{1-\zeta} \vec{\Delta}_{\perp}
$$

Link to DIS and Elastic Form Factors

$$
\begin{aligned}
& \text { DIS at } \xi=t=0 \\
& H^{q}(x, 0,0)=q(x), \quad-\bar{q}(-x) \\
& \widetilde{H}^{q}(x, 0,0)=\Delta q(x), \Delta \bar{q}(-x)
\end{aligned}
$$

Form factors (sum rules)

$\int_{d} d x \sum_{q}\left[H^{q}(x, \xi, t)\right]=F_{1}(t)$ Dirac f.f.
$\int_{1}^{1} d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t)$ Pauli f.f.
$\int_{-1}^{1} d x \widetilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)$

$$
\int d x \sum_{q}\left[E^{q}(x, \xi, t)\right]=F_{2}(t) \text { Pauli f.f. }
$$

$$
\int_{-1}^{1} d x \widetilde{H}^{q}(x, \xi, t)=G_{A, q}(t), \int_{-1}^{1} d x \widetilde{E}^{q}(x, \xi, t)=G_{P, q}(t)
$$

$$
H^{q}, E^{q}, \widetilde{H}^{q}, \widetilde{E}^{q}(x, \xi, t)
$$

Verified using LFWFs

Diehl,Hwang, sjb

Quark angular momentum (Ji's sum rule)
$J^{q}=\frac{1}{2}-J^{G}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, 0)+\underset{\text {. .J. Phy. Rev.Le }}{q}(, \xi\right.$

Space-time picture of DVCS

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

The position of the struck quark differs by x^{-}in the two wave functions
Measure x^{-}distribution from DVCS:
Take Fourier transform of skewness, $\xi=\frac{Q^{2}}{2 p . q}$ the longitudinal momentum transfer
S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$
S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

Fourier spectrum of the real part of the DVCS amplitude of an electron vs. σ for $M=0.51$ $\mathrm{MeV}, m=0.5 \mathrm{MeV}, \lambda=0.02 \mathrm{MeV}$, (a) when the electron helicity is not flipped; (b) when the helicity is flipped. The parameter t is in MeV^{2}.

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

$$
A\left(\sigma, \vec{\triangle}_{\perp}\right)=\frac{1}{2 \pi} \int d \xi e^{i \frac{1}{2} \xi \sigma} M\left(\xi, \vec{\triangle}_{\perp}\right)
$$

$$
\xi=\frac{Q^{2}}{2 p \cdot q}
$$

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

$$
\begin{aligned}
& \text { Hadron Optics } \\
& A\left(\sigma, \vec{b}_{\perp}\right)=\frac{1}{2 \pi} \int d \xi e^{i \frac{1}{2} \xi \sigma} \tilde{A}\left(\xi, \vec{b}_{\perp}\right) \quad \sigma=\frac{1}{2} x^{-} P^{+} \quad \xi=\frac{Q^{2}}{2 p . q}
\end{aligned}
$$

The Fourier Spectrum of the DVCS amplitude in σ space for different fixed values of GeV units

New Perspectives for $Q C D$ from $A d S / C F T$

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support $\mathrm{O}<\mathrm{x}<\mathrm{I}$.
- Quark Interchange dominant force at short distances

CIM: Blankenbecler, Gunion, sjb

Quark Interchange
(Spin exchange in atomatom scattering)

$$
\frac{d \sigma}{d t}=\frac{|M(s, t)|^{2}}{s^{2}}
$$

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$
$M(s, t)_{\text {gluonexchange }} \propto s F(t)$
MIT Bag Model (de Tar), large N_{C}, ('t Hooft), AdS/CFT all predict dominance of quark interchange:

Exclusive Processes \& AdS/QCD

AdS/CFT explains why quark interchange is dominant interaction at high momentum transfer in exclusive reactions
$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$
Non-linear Regge behavior:

$$
\alpha_{R}(t) \rightarrow-1
$$

Why is quark-interchange dominant over gluon exchange?

Example: $M\left(K^{+} p \rightarrow K^{+} p\right) \propto \frac{1}{u t^{2}}$
Exchange of common u quark
$M_{Q I M}=\int d^{2} k_{\perp} d x \psi_{C}^{\dagger} \psi_{D}^{\dagger} \Delta \psi_{A} \psi_{B}$
Holographic model (Classical level):

Hadrons enter 5th dimension of $A d S_{5}$
Quarks travel freely within cavity as long as
separation $z<z_{0}=\frac{1}{\Lambda_{Q C D}}$
LFWFs obey conformal symmetry producing quark counting rules.

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{\left({ }^{(}\right)}$G. C. Blazey, ${ }^{(b)}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{\text {(d) }}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and
S. Gushue ${ }^{(\mathrm{e})}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / \mathrm{c}$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm}, \\
& K^{ \pm} p \rightarrow p K^{ \pm}, \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm}, \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm}, \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm}, \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0}, \\
& p^{ \pm} p \rightarrow p p^{ \pm} .
\end{aligned}
$$

0.

10.0

Quark Interchange: Dominant Dynamics at large t, u

Relative Rates Correct

The cross section and upper limits (90% confidence level) measured by this experiment are indicated by the filled circles and arrowheads. Values from this experiment and from previous measurements represent an average over the angular region of $-0.05<\cos \theta_{\text {c.m. }}<0.10$. The other measurements were obtained from the following references: $\pi^{+} p$ and $K^{+} p$ elastic, Ref. 5; $\pi^{-} p \rightarrow p \pi^{-}$, Ref. 6; $p p \rightarrow p p$, Ref. 7: Allaby, open circle; Akerlof, cross. Values for the cross sections [(Reaction), cross section in $\left.\mathrm{nb} /(\mathrm{GeV} / \mathrm{c})^{2}\right]$ are as follows: (1), 4.6 ± 0.3; (2), 1.7 ± 0.2; (3), 3.4 ± 1.4; (4) , 0.9 ± 0.9; (5), 3.4 ± 0.7; (6), 1.3 ± 0.6; (7), 2.0 ± 0.6; (8), <0.12; (9), <0.1; (10), <0.06; (11), <0.05; (12), <0.15; (13), 48 ± 5; (14), <2.1.

Light-Front QCD

 Heisenberg Equation$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

Use AdS/QCD basisfunctions

Use AdS/CFT orthonormal LFWFs

 as abasis for diagonalizing the QCD LF Hamiltonian- Good initial approximant
- Better than plane wave basis

Pauli, Hornbostel, Hiller, McCartor, sjb

- DLCQ discretization -- highly successful I+I
- Use independent HO LFWFs, remove CM motion

Vary, Harinandrath, Maris, sjb

- Similar to Shell Model calculations

Maris, Vary, sjb

$$
\alpha=\frac{e_{e}^{2}}{4 \pi}, Z \alpha=\frac{e_{\mu} e_{e}}{4 \pi}
$$

Semi-Classical LF Hamiltonian
Precision QED calculation of muonium and hydrogenic atom spectroscopy

$$
E_{n}=E_{n}(Z \alpha, \alpha)
$$

Semiclassical theory

$$
E_{n}=E_{n}(Z \alpha, \alpha=0)
$$

No Lamb Shift, Renormalization

Muonium and Hydrogenic Atoms

JLab
May 22, 2007

Angular Momentum on the Light-Front

$\mathbf{A}^{+}=$o gauge:
$J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}$.

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

n-ı orbital angular momenta

Nonzero Anomalous Moment requires Nonzero orbital angular momentum

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp} \\
& \\
& \mathbf{p}, \mathbf{s}_{\mathbf{z}} \xrightarrow[-1 / 2]{ }
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$

Anomalous gravitomagnetic moment $B(0)$
Okun et al: $\mathcal{B}(O)$ Must vanish because of
Equivalence Theorem

Hwang, Schmidt, sjb;
Holstein et al

$$
B(0)=0
$$

Each Fock State

The Anomalous Magnetic Moment in Light-Front QCD

Each Fock state of the light-front wave function for a nucleon of spin J^{z} obeys

$$
J^{z}=\sum_{i=1}^{n} S_{i}^{z}+\sum_{i=1}^{n-1} L_{i}^{z}
$$

There are $\mathrm{n}-1$ orbital angular momenta in a Fock state of n constituents.
Recall [Brodsky, Drell, 1980]

$$
\kappa=-\sum_{a} \sum_{j} e_{j} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \psi_{a}^{*}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right) \mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp}^{q_{j}} \psi_{a}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right),
$$

with $\mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp}^{q_{j}} \equiv\left(S_{+} L_{-}^{q_{j}}+S_{-} L_{+}^{q_{j}}\right) / 2$
where $S_{ \pm}=S_{1} \pm i S_{2}$ and $L_{ \pm}^{q_{j}}=\sum_{i \neq j} x_{i}\left(\partial / \partial k_{1 i} \mp i \partial / \partial k_{2 i}\right)$
Empirically, $\kappa_{n}=-1.91 \mu_{N}$ and $\kappa_{p}=1.79 \mu_{N}$.

- The $\mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp}^{q_{j}}$ matrix element is large!
- $\kappa_{p}+\kappa_{n} \ll \kappa_{p}-\kappa_{n}$
\Longrightarrow The isoscalar anomalous magnetic moment is very small.

The Generalized Parton Distribution $E(x, \zeta, t)$

The generalized form factors in virtual Compton scattering
$\gamma^{*}(q)+p(P) \rightarrow \gamma^{*}\left(q^{\prime}\right)+p\left(P^{\prime}\right)$ with $t=\Delta^{2}$ and
$\Delta=P-P^{\prime}=\left(\zeta P^{+}, \Delta_{\perp},\left(t+\Delta_{\perp}^{2}\right) / \zeta P^{+}\right)$, have been constructed in the light-front formalism. [Brodsky, Dient, Hwang, 2001]
We find, under $\boldsymbol{q}_{\perp} \rightarrow \boldsymbol{\Delta}_{\perp}$, for $\zeta \leq x \leq 1$,

$$
\begin{aligned}
\frac{E(x, \zeta, 0)}{2 M}= & \sum_{a}(\sqrt{1-\zeta})^{1-n} \sum_{j} \delta\left(x-x_{j}\right) \int[\mathrm{d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \\
& \times \psi_{a}^{*}\left(x_{i}^{\prime}, \mathbf{k}_{\perp i}, \lambda_{i}\right) \mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp}^{\mathbf{q}_{\mathrm{i}}} \psi_{a}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right),
\end{aligned}
$$

with $x_{j}^{\prime}=\left(x_{j}-\zeta\right) /(1-\zeta)$ for the struck parton j and $x_{i}^{\prime}=x_{i} /(1-\zeta)$ for the spectator parton i.
The E distribution function is related to a $\mathbf{S}_{\perp} \cdot \mathbf{L}_{\perp}^{q_{j}}$ matrix element at finite ζ as well.

Electric Dipole Form Factor on the Light Front

We consider the electric dipole form factor $F_{3}\left(q^{2}\right)$ in the light-front formalism of QCD, to complement earlier studies of the Dirac and Pauli form factors. [Drell, Yan, PRL 1970; West, PRL 1970; Brodsky, Drell, PRD 1980] Recall

$$
\begin{aligned}
& \left\langle P^{\prime}, S_{z}^{\prime}\right| J^{\mu}(0)\left|P, S_{z}\right\rangle= \\
& \bar{U}\left(P^{\prime}, \lambda^{\prime}\right)\left[F_{1}\left(q^{2}\right) \gamma^{\mu}+F_{2}\left(q^{2}\right) \frac{i}{2 M} \sigma^{\mu \alpha} q_{\alpha}+F_{3}\left(q^{2}\right) \frac{-1}{2 M} \sigma^{\mu \alpha} \gamma_{5} q_{\alpha}\right] U(P, \lambda) \\
& \kappa=\frac{e}{2 M}\left[F_{2}(0)\right], \quad d=\frac{e}{M}\left[F_{3}(0)\right]
\end{aligned}
$$

We will find a close connection between κ and d, as long anticipated. [Bigi, Uralstev, NPB 1991]

Gardner, Hwang, sjb,

Interaction picture for $J^{+}(0), q^{+}=0$ frame, imply $\left(q^{R / L} \equiv q^{1} \pm i q^{2}\right)$:

$$
\begin{gathered}
\frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
{\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
\frac{F_{3}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{i}{2} \times \\
{\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)-\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
\mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp} \text { for the struck constituent } j \text { and } \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \text { for } \\
\text { each spectator }(i \neq j) . q^{+}=0 \Longrightarrow \text { only } n^{\prime}=n \text {. } \\
\text { Both } F_{2}\left(q^{2}\right) \text { and } F_{3}\left(q^{2}\right) \text { are helicity-flip form factors. }
\end{gathered}
$$

Gardner, Hwang, sjb,

A Universal Relation for $F_{2}\left(q^{2}\right)$ and $F_{3}\left(q^{2}\right)$

β_{a} violates \mathcal{P}_{\perp} and \mathcal{T}_{\perp}.

$$
\begin{gathered}
\psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)=\phi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right) e^{+i \beta_{a} / 2}, \\
\psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)=\phi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right) e^{-i \beta_{a} / 2} \\
\frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \cos \left(\beta_{a}\right) \Xi_{a} ; \quad \frac{F_{3}\left(q^{2}\right)}{2 M}=\sum_{a} \sin \left(\beta_{a}\right) \Xi_{a}, \\
\Xi_{a}=\int \frac{\left[\mathrm{d}^{2} \vec{k}_{\perp} \mathrm{d} x\right]}{16 \pi^{3}} \sum_{j} e_{j} \frac{1}{-q^{1}+i q^{2}}\left[\phi_{a}^{\uparrow *}\left(x_{i}, \vec{k}_{\perp i}^{\prime}, \lambda_{i}\right) \phi_{a}^{\downarrow}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right] .
\end{gathered}
$$

For Fock component a:

$$
\begin{array}{r}
{\left[F_{3}\left(q^{2}\right)\right]_{a}=\left(\tan \beta_{a}\right)\left[F_{2}\left(q^{2}\right)\right]_{a}} \\
d_{a}=\left(\tan \beta_{a}\right) 2 \kappa_{a} \quad \text { or } \quad d_{a}=2 \kappa_{a} \beta_{a} \quad \text { as } \quad q^{2} \rightarrow 0
\end{array}
$$

Both the EDM and anomalous magnetic moment should be calculated within a given method, to test for consistency.

$$
F_{3}\left(q^{2}\right)=F_{2}\left(q^{2}\right) \times \tan \phi
$$

Fock state by Fock state

Gardner, Hwang, sjb,

Annihilation amplitude needed for Lorentz Invariance
Exact Formula
Hwang, SJB
JLab
Exclusive Processes \& AdS/QCD
May 22, 2007

Hadronization at the Amplitude Level

$$
\psi\left(x, \vec{k}_{\perp}, \lambda_{i}\right)
$$

Event amplitude generator

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Light-Front Wavefunctions

Invariant under boosts! Independent of p^{μ}

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Hadronization at the Amplitude Level

Higher Fock State Coalescence $\mid u u d s \bar{s}>$
Asymmetric Hadronization! $\quad D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)$
B-Q Ma, sjb

$$
D_{s \rightarrow p}(z) \neq D_{s \rightarrow \bar{p}}(z)
$$

$$
A_{s}^{p \bar{p}}(z)=\frac{D_{s \rightarrow p}(z)-D_{s \rightarrow \bar{p}}(z)}{D_{s \rightarrow p}(z)+D_{s \rightarrow \bar{p}}(z)}
$$

Consequence of $s_{p}(x) \neq \bar{s}_{p}(x) \quad|u u d s \bar{s}>\simeq| K^{+} \wedge>$

Structure of
 Deuteron in
 QCD

JLab
May 22, 2007

Exclusive Processes \& AdS/QCD

Hidden Color in QCD

Lepage, Ji, sjb

- Deuteron six-quark wavefunction
- 5 color-singlet combinations of 6 color-triplets -only one state is |n p>
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict

$$
\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n) \text { at high } Q^{2}
$$

Lepage, Jj, sib

The evolution equation for six-quark systems in which the constituents have the light-cone longitudenat momentum fractions $x_{i}(i=1,2, \ldots, 6)$ can be obtained from a generalization of the proton (threequark) case. ${ }^{2}$ A nontrivial extension is the calculation of the color factor, C_{d}, of six-quark systems ${ }^{5}$ (see below). Since in leading order only pairwise interactions, with transverse momentum Q, occur between quarks, the evolution equation for the six-quark system becomes $\left\{[d y]=\delta\left(1-\sum_{i=1}^{6} y_{i}\right) \prod_{i=1}^{6} d y_{i}\right.$ $C_{F}=\left(n_{c}{ }^{2}-1\right) / 2 n_{c}=\frac{4}{3}, \beta=11-\frac{2}{3} n_{f}$, and n_{f} is the effective number of flavors $\}$

$$
\prod_{k=1}^{6} x_{k}\left[\frac{\partial}{\partial \xi}+\frac{3 C_{F}}{\beta}\right] \tilde{\Phi}\left(x_{i}, Q\right)=-\frac{C_{d}}{\beta} \int_{0}^{1}[d y] V\left(x_{i}, y_{i}\right) \tilde{\Phi}\left(y_{i}, Q\right)
$$

$$
\xi\left(Q^{2}\right)=\frac{\beta}{4 \pi} \int_{Q_{0}{ }^{2}}^{Q^{2}} \frac{d k^{2}}{k^{2}} \alpha_{s}\left(k^{2}\right) \sim \ln \left(\frac{\ln \left(Q^{2} / \Lambda^{2}\right)}{\ln \left(Q_{0}{ }^{2} / \Lambda^{2}\right)}\right)
$$

$$
V\left(x_{i}, y_{i}\right)=2 \prod_{k=1}^{6} x_{k} \sum_{i \neq j}^{6} \theta\left(y_{i}-x_{i}\right) \prod_{l \neq i, j}^{6} \delta\left(x_{l}-y_{l}\right) \frac{y_{j}}{x_{j}}\left(\frac{\delta_{h_{i} \ddot{h}_{j}}}{x_{i}+x_{j}}+\frac{\Delta}{y_{i}-x_{i}}\right)
$$

where $\delta_{h_{i} \bar{n}_{j}}=1(0)$ when the helicities of the constituents $\{i, j\}$ are antiparallel (parallel). The inf rared singularity at $x_{i}=y_{i}$ is cancelled by the factor $\Delta \tilde{\Phi}\left(y_{i}, Q\right)=\tilde{\Phi}\left(y_{i}, Q\right)-\tilde{\Phi}\left(x_{i}, Q\right)$ since the deuteron is a color singlet.

QCD Prediction for

Deuteron Form Factor

$$
F_{d}\left(Q^{2}\right)=\left[\frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\right]_{m, n}^{5} \sum_{m n}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-\gamma_{n}^{d}-\gamma_{m}^{d}}\left[1+\boldsymbol{O}\left(\alpha_{s}\left(Q^{2}\right), \frac{m}{Q}\right)\right]
$$

Define "Reduced" Form Factor

$$
f_{d}\left(Q^{2}\right) \equiv \frac{F_{d}\left(Q^{2}\right)}{F_{N}^{2}\left(Q^{2} / 4\right)} .
$$

Same large momentum transfer behavior as pion form factor

FIG. 2. (a) Comparison of the asymptotic QCD pre$f_{d}\left(Q^{2}\right) \sim \frac{\alpha_{s}\left(Q^{2}\right)}{Q^{2}}\left(\ln \frac{Q^{2}}{\Lambda^{2}}\right)^{-(2 / 5) c_{F} / \beta}$ diction $f_{d}\left(Q^{2}\right) \propto\left(1 / Q^{2}\right)\left[\ln \left(Q^{2} / \Lambda^{2}\right)\right]^{-1-(2 / 5) C_{F} / \beta}$ with final data of Ref. 10 for the reduced deuteron form factor, where $F_{N}\left(Q^{2}\right)=\left[1+Q^{2} /\left(0.71 \mathrm{GeV}^{2}\right)\right]^{-2}$. The normalization is fixed at the $Q^{2}=4 \mathrm{GeV}^{2}$ data point. (b) Comparison of the prediction $\left[1+\left(Q^{2} / m_{0}{ }^{2}\right)\right] f_{d}\left(Q^{2}\right) \propto\left[\ln \left(Q^{2} /\right.\right.$ $\left.\left.\Lambda^{2}\right)\right]^{-1-(2 / 5)} C_{F} / \beta$ with the above data. The value $m_{0}{ }^{2}$

[^0]

Elastic electron-deuteron scattering

- Evidence for Hidden Color in the Deuteron

Hadronization at the Amplitude Level

 Hidden-Color Fock States

$$
\gamma \rightarrow g g g \rightarrow q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} \longrightarrow \bar{d} X
$$

Anti-Denteron vs. double antibaryon production

$$
\uparrow \rightarrow g g g \rightarrow q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} q \bar{q} \rightarrow \bar{p} \bar{n} X
$$

Key Test of Hidden Color

- CLEO measurement: Upsilon decay to antideuteron $\gamma \rightarrow g g g \rightarrow \bar{d} X$
- Is ratio of deuteron production to production of anti-nucleon pairs determined by Nuclear Physics?

$$
\begin{gathered}
R=\frac{\Gamma(\Upsilon \rightarrow \bar{d} X)}{\Gamma(\Upsilon \rightarrow \bar{p} \bar{n} X)} \\
\frac{E}{\sigma_{\text {tot }}} \frac{\mathrm{d}^{3} \sigma(\mathrm{~d})}{\mathrm{d}^{3} p}=C\left(\frac{E}{\sigma_{\text {tot }}} \frac{\mathrm{d}^{3} \sigma(\mathrm{p})}{\mathrm{d}^{3} p}\right)^{2} \quad C=\frac{4 \pi}{3} p_{0}^{3} / m_{\mathrm{p}} \quad p_{0} \approx 130 \mathrm{MeV}
\end{gathered}
$$

Gustafson, Hakkinen
$\pi \mathrm{N} \rightarrow \mu^{+} \mu^{-} \mathrm{X}$ at high X_{F}

In the limit where $\left(1-\mathrm{x}_{\mathrm{F}}\right) \mathrm{Q}^{2}$ is fixed as $\mathrm{Q}^{2} \rightarrow \infty$

Entire pion wf contributes to hard process

Berger and Brodsky, PRL 42 (1979) 940

JLab May 22, 2007

$$
\pi q \longrightarrow \gamma^{*} q
$$

Pion appears directly in subprocess at large x_{F}
All of the pion's momentum is transferred to the lepton pair Lepton Pair is produced longitudinally polarized

$$
\pi^{-} N \rightarrow \mu^{+} \mu^{-} X \text { at } 80 \mathrm{GeV} / c
$$

$$
\frac{d \sigma}{d \Omega} \propto 1+\lambda \cos ^{2} \theta+\rho \sin 2 \theta \cos \phi+\omega \sin ^{2} \theta \cos 2 \phi
$$

$$
\frac{d^{2} \sigma}{d x_{\pi}^{d} d \cos \theta} \propto x_{\pi}\left(\left(1-x_{\pi}\right)^{2}\left(1+\cos ^{2} \theta\right)+\frac{4}{9} \frac{\left\langle k_{T}^{2}\right\rangle}{M^{2}} \sin ^{2} \theta\right)
$$

$$
\left\langle k_{T}^{2}\right\rangle=0.62 \pm 0.16 \mathrm{GeV}^{2} / c^{2}
$$

Dramatic change in angular distribution at large XF

Example of a higher-twist direct subprocess

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

JLab
May 22, 2007

Baryon can be made directly within hard subprocess

Bjorken
Blankenbecler, Gunion, sjb Berger, sjb

$$
\phi_{p}\left(x_{1}, x_{2}, x_{3}\right) \propto \wedge_{Q C D}^{2}
$$

Hoyer, et al: Semi-Exclusive

Hoyer, et al: Semi-Exclusive

$$
u u \rightarrow p \bar{d}
$$

Collision can produce 3 collinear quarks

$$
\mathbf{n a c t i v e}=6
$$

$$
q q \rightarrow B \bar{q}
$$

$$
\mathbf{n}_{\mathbf{e f f}}=\mathbf{2} \mathbf{n}_{\text {active }}-4
$$

$$
\bar{d} \quad n_{\text {eff }}=8
$$

$$
E \frac{d \sigma}{d^{3} p}(p p \rightarrow H X)=\frac{F\left(x_{T}, \theta_{C M}\right)}{p_{T}^{n_{e f f}}}
$$

S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003).

Particle ratio changes with centrality!

\leftarrow Central

- ■ Au+Au 0-10\%
$\triangle \Delta A u+A u$ 20-30\%
- $A u+A u$ 60-92\%
$\star \mathrm{p}+\mathrm{p}, \sqrt{\mathrm{s}}=53 \mathrm{GeV}$, ISR
---- $\mathbf{e}^{+} \mathbf{e}^{-}$, gluon jets, DELPHI
...... $\mathbf{e}^{+} \mathbf{e}^{-}$, quark jets, DELPHI
\leftarrow Peripheral

Protons less absorbed in nuclear collisions than pions!

Open (filled) points are for $\pi^{ \pm}\left(\pi^{U}\right)$, respectively.

Evidence for Dírect, Higher-Twist

Subprocesses

- Anomalous power behavior at fixed x_{T}
- Protons more likely to come from direct subprocess than pions
- Protons less absorbed than pions in central nuclear collisions because of color transparency
- Predicts increasing proton to pion ratio in central collisions
- Exclusive-inclusive connection at $\mathrm{x}_{\mathrm{T}}=\mathrm{I}$

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right) \underset{\substack{s=\frac{t}{p+}}}{ }
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front QCD Phenomenology

- Hidden color, Intrinsic glue, sea, Color Transparency
- Near Conformal Behavior of LFWFs at Short Distances; PQCD constraints
- Vanishing anomalous gravitomagnetic moment
- Relation between edm and anomalous magnetic moment
- Cluster Decomposition Theorem for relativistic systems
- OPE: DGLAP, ERBL evolution; invariant mass scheme

Holographic Connnection between LF and AdS/CFT

- Predictions for hadronic spectra, light-front wavefunctions, interactions
- Use AdS/CFT as basis for diagonalizing the LF Hamiltonian
- Deduce meson and baryon wavefunctions, distribution amplitude, structure function from holographic constraint
- Extension to massive quarks
- Implementation of Chiral Symmetry

Boost Invariant 3+1 Light-Front Wave Equations
$J=0,1,1 / 2,3 / 2$ plus L
Hadron Spectra, Wavefunctions, Dynamics

[^0]: May 22, 2007

