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Physics of Rescattering

• Diffractive DIS: New Insights into Final State 
Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability 
Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark!

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect; gauge independent

• Unexpected QCD Effect -- thought to be zero!

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD Coulomb phase at soft scale

• Measure in jet trigger or leading hadron

• Sum of Sivers Functions for all quarks and gluons-- relate to                                 
(Zero gravito-anomalous magnetic moment: B(0)= 0)

!S ·!p jet×!q

!S ·!p jet×!qi
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑
a

∫
[dx][d2k⊥]

∑
j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑
a

∫
[dx][d2k⊥]

∑
j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)− 1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡ ∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]
16π3δ

(
1−

n∑
i=1

xi

)
δ(2)

(
n∑

i=1

k⊥i

)
, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjbA(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

7

Same matrix elements appear in Sivers effect
-- connection to quark anomalous moments
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

8

Hwang, Schmidt, sjb; 
Holstein et al

Okun et al:  B(0) Must vanish because of 
Equivalence Theorem 
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect;                       
gauge independent

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD phase at soft scale

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite

!S ·!p jet×!q

!S ·!p jet×!qi
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
Log_10!q"GeV#$

0.5

1

1.5

2

2.5

3
Α

s
"q#

FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α| 1

i /D(U) + m0
|χp,β〉

〉
.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2
QCD)]dM −1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Schwinger-Dyson

lattice: Furui, Nakajima (MILC)

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.
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Shirkov
Gribov

Dokshitser
Siminov
Maxwell
Cornwall

log10 Q2(GeV2)

Φ(z) = z3/2φ(z)

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

αs(Q2)

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

Conformal window 
 Infrared  fixed-point

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′
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N.C.R. Makins, NNPSS, July 28, 2006
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Sivers function!

• ⇒ presence of non-zero quark
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz != 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model
Schmidt, Lu: Hermes

charge pattern follow quark 
contributions to anomalous 

moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑
q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]
+ sin(φ − φS)

∑
q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k2

T ) is the usual unpolarized fragmentation
function.

The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final
(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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transversity distribution function [7] and Dq
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The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Figure 22: Overall results for Collins asymmetry (top) and Sivers asymmetry (bottom) against

x, z and ph
T for all positive (full circles) and all negative hadrons (open circles) from 2002, 2003,

and 2004 data. Error bars are statistical only. In all the plots the open circles are slightly shifted

horizontally with respect to the measured value.

This was not the case in so far. Three global analyses have been performed with the

published data, trying to derive bounds on the transversity distributions and the Collins frag-

mentation functions. In Ref. [46] the Soffer bound |∆T q| = (q + ∆q)/2 was used, a fit of the
HERMES data set was performed, and the Collins functions were extracted. Two different sce-

narios for favoured and unfavoured Collins fragmentation functions were considered, but the

fits always favoured a relation ∆0
T D1 ∼ −∆0

T D2. The comparison of the fit results with the

COMPASS data shows a fair agreement, as apparent from Fig. 23, although the data do not

exhibit the trend with x which is suggested by the model. The upper and lower curves in the
figures correspond to the 1-σ errors of the fitted parameters.

In Ref. [27] a chiral quark-soliton model was used for the transversity distributions, and

the Collins fragmentation function was derived from a fit to the HERMES data, which do not

constrain the ∆T d distribution. A comparison with the present COMPASS results shows again
a fair agreement (Fig. 24). The upper and lower curves in the figures correspond to the uncer-

tainty in the Collins fragmentation functions as obtained from the fit. Independent extraction

of the Collins function was performed by fitting the BELLE data. The result was found to be

compatible with the one obtained fitting the HERMES data.

Similar results were obtained in Ref. [47]. Two different scenarios were used for transver-

sity, either ∆T q = ∆q, or the Soffer bound, and the Collins fragmentation functions were ex-
tracted from a fit to the HERMES data. The fits were very good in both cases. The extracted
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EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN–PH–EP/2006–031

September 21, 2006

A new measurement of the Collins and Sivers
asymmetries on a transversely polarised deuteron

target

The COMPASS Collaboration

Abstract

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons

produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are

presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using

the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries

turn out to be compatible with zero, within the present statistical errors, which are more

than a factor of 2 smaller than those of the published COMPASS results from the 2002 data.

The final results from the 2002, 2003 and 2004 runs are compared with naive expectations

and with existing model calculations.

Keywords: transversity, deuteron, transverse single-spin asymmetry, Collins asymmetry,

Sivers asymmetry, COMPASS

PACS 13.60.-r, 13.88.+e, 14.20.Dh, 14.65.-q

(Submitted to Nuclear Physics B)

Sivers SSA cancels on an isospin zero target -- 
gluon contribution to the Sivers asymmetry small

small gluon contribution to orbital angular momentum of nucleon

Gardner, sjb

hep-ex/0610068
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Outlook

E

φ K +K−
γ∗g → ss̄ → φ + X γ∗g → ss̄ → K +K− + X

S. Gardner (Univ. of Kentucky) Spin-Flip Matrix Elements in Light-Front QCD Oberwölz, September, 2006 12

Gardner, sjb

Recent COMPASS data on deuteron: 
small Sivers effect

14



JLab Exclusive 
May 24, 2007

 Stan Brodsky,  
SLAC

Novel ISI and FSI QCD Interactions

Single Spin Asymmetry In the Drell Yan Process
!Sp ·!p×!qγ∗
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver’s Effect]Proportional

to the Proton Anomalous Moment and αs.
Opposite Sign to DIS! No Factorization

Collins; 
Hwang, Schmidt. 

sjb

Predict Opposite Sign SSA in DY !
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the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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perturbative QCD calculation at next-to-leading order leads
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the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the
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2) per-
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2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
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We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
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2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
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since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
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for which one chooses the following set of normalized vec-
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ẑ1
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where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(
1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ

)
, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV
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Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈
H22 − H11

1 + H33

〉
. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0
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0 1 2 3 4 5 6 7 8
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Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiatio!
ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(
1 + λ cos2 θ + µ sin 2θ cosφ +

ν

2
sin2 θ cos 2φ

)
, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-
inclusive DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

Problem for factorization when both ISI and FSI occur
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FIG. 8: The exchange of two extra gluons, as in this graph,
will tend to give non-factorization in unpolarized cross sec-
tions.

FIG. 9: In a conventional perturbative QCD calculation for
an unpolarized partonic cross section, non-factorization by
the mechanisms discussed in this paper would first appear in
graphs of this order.

culations. Normally one performs calculations with on-
shell massless quarks and gluons, and extracts collinear
divergences that are grouped with parton densities and
fragmentation functions; any remaining divergences can-
cel between graphs. Non-factorization in the hadronic
cross section corresponds to uncanceled divergences in
quark-gluon calculations. The lowest order in which the
mechanisms we have discussed could possible give an un-
canceled divergence in unpolarized partonic cross sec-
tions is NNNLO, as in Fig. 9. The region for the un-
canceled divergence is where the lower gluon is collinear
to the lower incoming quark, and two of the exchanged
gluons are soft. This graph is at least one order beyond
all standard perturbative QCD calculations.

Because our calculations directly concern cross sec-
tions that use transverse-momentum-dependent parton
densities, a certain amount of care is needed in inter-
preting the results. The natural direction for the Wilson
lines is light-like, as from Eq. (3.8). However light-like
Wilson lines give divergences in transverse-momentum-
dependent densities [7]. These are due to rapidity di-
vergences [20] in integrals over gluon momentum; they
cancel [7] in conventional parton densities only because
of an integral over all transverse momentum in integrated

parton densities. The solution adopted by Collins, Soper
and Sterman [7] (CSS) was to define parton densities
without Wilson lines but in a non-light-like axial gauge.
The gauge-fixing vector introduces a cut-off on gluon ra-
pidity, and then an evolution equation with respect to
the cut-off was derived. The non-perturbative functions
involved in this CSS evolution equation have been mea-
sured (e.g., [21]) in fits to DY cross sections, and would
be an essential ingredient in testing non-factorization.

However, there are some unsatisfactory features of the
use of axial gauges, which are made particularly evident
in polarized cross sections. This includes complications
concerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
non-light-like Wilson line. This again obeys an equation
of the CSS form. It is also possible to use a subtractive
formalism [20, 23] with light-like Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.

To test the predicted non-factorization, we simply need
predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in
DIS and DY and to fragmentation functions in e+e− and
SIDIS [24]. Probing the SSA would be particularly inter-
esting, and such measurements are underway at RHIC
[25, 26]. The same physics is probed in the transverse
shape of jets, and would be worth investigating.

Our counterexample applies in a kinematic region
where the normal intuitive ideas of the parton model
appear quite appropriate, even with a generalization to
kT -factorization. Therefore it forces us to question un-
der what conditions factorization is actually valid and to
what extent it has actually been demonstrated. It cannot
be assumed that naive extensions of apparently estab-
lished results are applicable beyond the cases to which
the actual proofs explicitly apply.

For hadron-hadron collisions, factorization has been
proved [5, 6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present pa-
per. But these papers do not go beyond this, to the pro-
duction of hadrons. Because factorization is important to
all aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT

hadrons. Given our counterexample to kT -factorization,
a proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron-pair has
itself large transverse momentum or when the pair’s out-
of-plane transverse momentum is integrated over a wide
range.

In fact, Nayak, Qiu and Sterman [27] have recently
given strong arguments that collinear factorization does
indeed hold in such a situations. The graphs examined
are similar to ours. They apply Ward identities to prove
an eikonalization generalizing our specific calculations.
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Physics Department, Penn State University, 104 Davey Laboratory, University Park PA 16802, U.S.A.

Jian-Wei Qiu†

Department of Physics and Astronomy, Iowa State University, Ames IA 50011, U.S.A. and
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(Dated: 15 May 2007)

We show that hard-scattering factorization is violated in the production of high-pT hadrons in
hadron-hadron collisions, in the case that the hadrons are back-to-back, so that kT factorization
is to be used. The explicit counterexample that we construct is for the single-spin asymmetry
with one beam transversely polarized. The Sivers function needed here has particular sensitivity
to the Wilson lines in the parton densities. We use a greatly simplified model theory to make the
breakdown of factorization easy to check explicitly. But the counterexample implies that standard
arguments for factorization fail not just for the single-spin asymmetry but for the unpolarized cross
section for back-to-back hadron production in QCD in hadron-hadron collisions. This is unlike
corresponding cases in e+e− annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the
result endangers factorization for more general hadroproduction processes.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 13.87.-a, 13.88.+e

I. INTRODUCTION

The great importance of hard-scattering factorization
in high-energy phenomenology hardly needs emphasis.
Essential to its application and predictiveness is the uni-
versality of parton densities (and fragmentation func-
tions, etc) between different reactions. However, as can
be seen from [1, 2, 3, 4], process-dependent Wilson lines
appear to be needed in the inclusive production of two
high-transverse-momentum particles in hadron-hadron
collisions, i.e., in the process

H1 + H2 → H3 + H4 + X. (1.1)

In this paper we will show that this situation definitively
leads to a breakdown of factorization.

The standard expectation is that the cross section is
a convolution of a hard scattering coefficient dσ̂, par-
ton densities, fragmentation functions and a possible soft
function:

E3E4

dσ

d3p3d3p4

=
∑ ∫

dσ̂i+j→k+l+X fi/1 fj/2 d3/k d4/l

+ power-suppressed correction.
(1.2)

Here the sum and integral are over the flavors and mo-
menta of the partons of the hard scattering, fi/H denotes
a parton density, and dH/i a fragmentation function.

It is noteworthy that the classic published proofs for
factorization in hadron-hadron scattering [5, 6] only con-
cerned the Drell-Yan process. There are a number of

∗Electronic address: collins@phys.psu.edu
†Electronic address: jwq@iastate.edu

difficult issues in the proof that are highly non-trivial
to extend to other reactions in hadron-hadron collisions,
even though Eq. (1.2) is a standard expectation.

We will examine the case that the produced hadrons
are almost back-to-back. Then the appropriate factoriza-
tion property is kT -factorization, which entails [7] the use
of transverse-momentum dependent (TMD) parton den-
sities and fragmentation functions. However, the issues
raised by our counterexample to factorization are suffi-
ciently general that they create a need to examine very
carefully the arguments for factorization in hadropro-
duction of hadrons even in situations where ordinary
collinear factorization with integrated densities is appro-
priate. In the case of kT -factorization with TMD den-
sities, the factorization formula needs the insertion of a
soft factor S, not shown in Eq. (1.2).

The problems concern gluon exchanges between differ-
ent kinds of collinear line, as in Fig. 7 below. To obtain
factorization, the gluon attachments must be converted
to Wilson lines in gauge-invariant definitions of the par-
ton densities and fragmentation functions. This relies [6]
on the use of Ward identities applied to approximations
to the amplitudes. But the approximations are only valid
after certain contour deformations on the loop momenta.

Bacchetta, Bomhof, Mulders and Pijlman [1, 2, 3, 4]
argued that because of the complicated combination of
initial- and final-state interactions, the Wilson lines must
be modified. What is not so clear is the interpretation of
their result. So in the present paper we present an argu-
ment to make fully explicit the failure of factorization.

Since the issue is one of factorization in general, and
not just specifically in QCD, we clarify the issue by ex-
amining a particular process in a model field theory. The
process is a transverse single-spin asymmetry of the kind
controlled by a Sivers function. This is a case where prob-

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

!

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(
1 − y +

y2

2

)
σD(4)

r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫
dt σD(4)

r .

10% to 15% 
of DIS events 

are 
diffractive !

Remarkable observation at HERA
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Diffractive Deep Inelastic Lepton-Proton 
Scattering

DDIS



                       

Diffractive Structure Function F2
D  

de Roeck
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p

Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

26

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate 
T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target
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Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 
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S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne
and F. Sannino, Phys. Rev. D 65, 114025 (2002)
[arXiv:hep-ph/0104291].
S. J. Brodsky, R. Enberg, P. Hoyer and G. Ingel-
man, arXiv:hep-ph/0409119.
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Enberg, Hoyer, Ingelman, sjb
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Also describes: vector meson leptoproduction BGMFS
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easily expressed in eikonal form in terms of transverse distances rT , RT conjugate to
p2T , kT . The DIS cross section can be expressed as

Q4 dσ

dQ2 dxB
=

αem

16π2

1 − y

y2

1

2Mν

∫ dp−2
p−2

d2%rT d2 %RT |M̃ |2 (3)

where

|M̃(p−2 ,%rT , %RT )| =

∣∣∣∣∣∣
sin

[
g2 W (%rT , %RT )/2

]
g2 W (%rT , %RT )/2

Ã(p−2 ,%rT , %RT )

∣∣∣∣∣∣ (4)

is the resummed result. The Born amplitude is

Ã(p−2 ,%rT , %RT ) = 2eg2MQp−2 V (m||rT )W (%rT , %RT ) (5)

where m2
|| = p−2 MxB + m2 and

V (m rT ) ≡
∫ d2%pT

(2π)2

ei!rT ·!pT

p2
T + m2

=
1

2π
K0(m rT ). (6)

The rescattering effect of the dipole of the qq is controlled by

W (%rT , %RT ) ≡
∫ d2%kT

(2π)2

1 − ei!rT ·!kT

k2
T

ei!RT ·!kT =
1

2π
log


 |%RT + %rT |

RT


 . (7)

The fact that the coefficient of Ã in Eq. (4) is less than unity for all %rT , %RT shows that
the rescattering corrections reduce the cross section in analogy to nuclear shadowing.
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Figure 1: Two types of final state interactions. (a) Scattering of the antiquark (p2

line), which in the aligned jet kinematics is part of the target dynamics. (b) Scattering
of the current quark (p1 line). For each light-front time-ordered diagram, the poten-
tially on-shell intermediate states—corresponding to the zeroes of the denominators
Da, Db, Dc—are denoted by dashed lines.

A new understanding of the role of final-state interactions in deep inelastic scat-
tering has thus emerged. The final-state interactions from gluon exchange occurring

4

Precursor of Nuclear Shadowing BHMPS

FSI not 
Unitary Phase!
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 Hard Diffractive 
Hadron-Hadron Collisions

• Single diffractive + high PT 

• Double diffractive + high PT 

• Heavy quarks diffractive

• Lepton pair diffractive  (Berman, Levy, Yan 1969)

• Nuclear dependence 

Bartels, Goulianis,
Mueller, BFKL, 

Kovchegov, Maor, Khoze, 
Peigne, Gay Ducati 

Kopeliovitch, Schmidt, sjb

σ(pA→ J/ψX) ∝ A2/3 at high xF

Behavior of αs in infrared

Puzzles such as large AN , J/ψ → ρπ, double
charmonium production

ep→ eπ+n

Pπ/p # 30%

Violation of Gottfried sum rule
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Predict: Reduced DDIS/DIS for Heavy Quarks

See also: Bartels et al

Kopeliovitch, Schmidt, sjb

Higher Twist 
Diffraction Fraction

P ’

35

b⊥ = O(1/M)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2⊥)

µR

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) " Λ2

QCD

M2
Q

s̄(x) #= s(x)

φM(x, Q0) ∝
√

x(1− x)Reproduces lab-frame color dipole approach



JLab Exclusive 
May 24, 2007

 Stan Brodsky,  
SLAC

Novel ISI and FSI QCD Interactions
36

Intrinsic Charm Mechanism for 
Exclusive Diffraction Production

xJ/ψ = xc+ xc̄

Intrinsic cc̄ pair formed in color octet 8C in pro-
ton wavefunction
Collision produces color-singlet J/ψ through

color exchange

Kopeliovitch, Schmidt, Soffer, sjb

RHIC Experiment

Large Color Dipole

p p→ J/ψ p p

Exclusive Diffractive 
High-XF Higgs Production
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Intrinsic Charm Mechanism for Exclusive 
Diffraction Production

Kopeliovitch, Schmidt, Soffer, sjb
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Hadronization at the Amplitude Level
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γ∗
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e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + pTimelike Pomero"
Large Rapidity Gap Events 

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = |yH − yX |

C= +    Gluonium Trajectory 

Bjorken, Lu, sjb
Kopeliovich, 
Schmidt, sjb

e+e− → H+H−+ X

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |

e+e− → H+H−+ X

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |
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Hadronization at the Amplitude Level
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Timelike Oddero"
Large Rapidity Gap Events 

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = yH − yX

e+e− → H+H−+ X

H+
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Large ∆y = yH − yX

e+e− → H+H−+ X

H+

H−

Large ∆y = |yH − yX |

e+e− → H+H−+ X

H+H− asymmetry from Odderon-Pomeron
interference

Crossing analog of Diffractive DIS

eH → eH + X

H+

H−

Large ∆y = |yH − yX |

C= -    Gluonium Trajectory 

Kopeliovich, 
Schmidt, sjb
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A
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ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 4: (Color online) Comparison with Drell-Yan data of

R = σpA
DY /σpA′

DY . The ratios (Rexp − Rtheo)/Rtheo are shown.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.

5

Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF ! 

 Dynamical effect due to virtual photon interacting in 
nucleus

Stodolsky
Pumplin, sjb

Gribov

Shadowing depends on understanding leading twist-
diffraction in DIS
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2ν/Q2 ≥ LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

→ Shadowing of the DIS nuclear structure
functions.

  Observed HERA DDIS produces nuclear shadowing
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Integration over on-she# domain produces phase i
Need Imaginary Phase to Generate Pomero"

Need Imaginary Phase to Generate T-
Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

Shadowing depends on 
understanding leading-
twist-diffraction in DIS
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Origin of Regge Behavior of        
Deep Inelastic Structure Functions

44

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1 gives F2N ∼
x1−αR

Nonsinglet Kuti-Weisskoff F2p − F2n ∝
√

xbj
at small xbj.

Shadowing of σq̄M produces shadowing of
nuclear structure function.

c

Landshoff, Polkinghorne, Short

Close, Gunion, sjb

Schmidt, Yang,  Lu, sjb
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Non-singlet 
Reggeon 
Exchange

x0.5

Kuti-Weisskopf 
behavior
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The one-step and two-step processes in DIS
on a nucleus.

If the scattering on nucleon N1 is via
C = − Reggeon or Odderon exchange,
the one-step and two-step amplitudes are
opposite in phase, enhancing
the q flux reaching N2

→ Antishadowing of the
DIS nuclear structure functions

   constructive in phase, enhancing

H. J. Lu, sjb
Schmidt, Yang, sjb

46



JLab Exclusive 
May 24, 2007

 Stan Brodsky,  
SLAC

Novel ISI and FSI QCD Interactions

Phase of two-step amplitude relative to one
step:

1√
2
(1− i)× i = 1√

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ∗, Z0, W±

Reggeon 
Exchange
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Figure 9: The nuclear shadowing and antishadowing effects at 〈Q2〉 = 1 GeV2. The
experimental data are taken from Refs. [47, 48].

interactions.

3 Nuclear effects on extraction of sin
2 θW

The observables measured in neutrino DIS experiments are the ratios of neutral cur-

rent (NC) to charged current (CC) current events; these are related via Monte Carlo

simulations to sin2 θW . In order to examine the possible impact of nuclear shadowing

and antishadowing corrections on the extraction of sin2 θW , one is usually interested

in the following ratios

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ− + X)
, (38)

Rν
A =

σ(νµ + A → νµ + X)

σ(νµ + A → µ+ + X)
(39)

of NC to CC neutrino (anti-neutrino) cross sections for a nuclear target A. As is well

known, if nuclear effects are neglected for an isoscalar target, one can extract the

24

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

48

Predicted nuclear shadowing and and antishadowing at 

< xF >= 0.33

Q2 = 1 GeV2

pp → p + H + p

H, Z0, ηb

b⊥ ∼ 1/Q

Must have ∆Lz = ±1 to have nonzero F2

Use charge radius R2 = −6F ′1(0)
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Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference
of Two-Step and One-Step Processes
Pomeron Exchange

• Antishadowing: Constructive Interference
of Two-Step and One-Step Processes!
Reggeon and Odderon Exchange

• Antishadowing is Not Universal!
Electromagnetic and weak currents:
different nuclear effects !
Potentially significant for NuTeV Anomaly}

49

Jian-Jun Yang 
Ivan Schmidt
Hung Jung Lu

sjb



JLab Exclusive 
May 24, 2007

 Stan Brodsky,  
SLAC

Novel ISI and FSI QCD Interactions

Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].
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Nuclear Effect not Universal !
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Paul Hoyer Jyväskylä 27.3 2007

25

! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1
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Berger, Lepage, sjb
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Pion appears directly in subprocess at large xF
All of the pion’s momentum is transferred to the lepton pair

Lepton Pair is produced longitudinally polarized

Initial State 
Interaction
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Chicago-Princeton
Collaboration

xπ = xq̄

The p/π+ and p̄/π− ratios as a function of
pT increase dramatically to values ∼ 1 as a
function of centrality in Au + Au collisions
at RHIC which was totally unexpected and
is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT

Dramatic change in 
angular distribution at 

large xF

Direct Subprocess Predictio"

 Phys.Rev.Lett.55:2649,1985

Example of a higher-twist 
direct subprocess



 

p
u u

neff = 4

nactive =  4
neff = 2nactive -  4

xT

ε = 1− xT

xT = 2pT√
s

pp→ HX at high pT

Working assumption: leading-twist subpro-
cesses plus jet fragmentation

qq → qq, gq → gq, gg → qq̄, gg → gg

u

p

H

Color Opaque

 Hadron created from 
jet fragmentation

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T
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p

u u

d

Baryon can be made directly within hard subprocess

nactive =  6
g g

Oberwölz

φp(x1, x2, x3) ∝ Λ2
QCD

α(Q2) " 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pp→ pX) = F (xT ,θCM)
p8
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T

56

Collision can produce 3 
collinear quarks 

Coalescence 
within hard 
subprocess

Bjorken
Blankenbecler, Gunion, sjb

Berger, sjb 
Hoyer, et al: Semi-Exclusive

neff = 8
neff = 2nactive -  4

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

d
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Crucial Test of Leading -Twist QCD:
Scaling at fixed xT

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T

neff  = 4

Bjorken scaling 
Conformal scaling: neff  =  2 nactive - 4



 

5 10 15 20
pT  !GeV"4.25

4.5

4.75

5

5.25

5.5

5.75

6
neff

PQCD prediction:  Modification of power  fall-off due to 
DGLAP evolution and the Running Coupling

Pirner, Raufeisen, sjb

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T

Key test of PQCD:   power fall-off at fixed xT

neff  ~ 4.5



 

4

We shall assume that at high pT , the inclusive cross section takes a factorized form, even

if the microscopic mechanism is higher twist,

dσ(hahb → hX) =
∑
abc

Ga/ha
(xa)Gb/hb

(xb)dxadxb
1

2ŝ
|Afi|2 dXfDh/c(zc)dzc. (4)

The dimensionless functions Ga/ha
(xa) describe the momentum distributions of partons of

type a in hadron ha, where a may stand for quarks and gluons as well as for composite degrees

of freedom, such as diquarks and intrinsic hadrons. These functions cannot be calculated

perturbatively, except in the limits xa,b → 1. For quarks and gluons, the scale dependence of

the distribution functions is described by the DGLAP evolution equations, but the evolution

of color-neutral degrees of freedom is suppressed by at least one power of the hard scale,

since gluon radiation off color neutral objects is suppressed. Similar observations can be

made for the fragmentation function Dh/c(zc), which accounts for the transition of a parton

c into a hadron h with momentum fraction zc = x1/xa + x2/xb. The amplitude of the hard

subprocess Afi is assumed to be calculable in perturbative QCD. Integration and summation

over all unobserved variables, such as the phase space dXf of the final state, is understood.

By keeping all ratios of Mandelstam variables fixed, the x dependence of the distribution

functions does not affect the scaling behavior of the hadronic cross section. The factorization

hypothesis Eq. (4) then yields the power law

E
d3σ(hahb → hX)

d3p
=

f(t/s, u/s)

snactive−2
, (5)

which reflects the mass dimension of the microscopic amplitude. Hence, the inclusive cross

section multiplied by pn
T with

n = 2nactive − 4, (6)

is a function of the dimensionless variables y and xR only,

E
d3σ(hahb → hX)

d3p
=

F (y, xR)

pn(y,xR)
T

. (7)

This is the desired relation: the pT dependence of the inclusive cross section is directly related

to the number of participants nactive in the microscopic matrix element. In higher twist

processes, the function F (y, xR) also depends on the hadron distribution amplitudes, which
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FIG. 1: The effective power neff according to Eq. (11). The lower curve assumes 4 active fields

and asymptotically approaches neff(nactive = 4, pT → ∞) = 4. Calculations were performed at

xT = 0.03 and y = 0, which are typical values for RHIC.

Here, β0 = 11 − 2Nf/3 is the QCD β-function, CR = CF = 4/3 for quarks and CR =

CA = 3 for gluons. Note the lower integration limit k2
xR

: at large xR, the phase space for

gluon radiation vanishes and QCD scaling violations disappear. Hence, the simple spectator

counting rules become exact at the exclusive boundary.

We shall now investigate, how QCD scaling violations affect xR scaling. For that purpose,

we define an effective power neff (pT ) by taking the logarithmic derivative

neff (pT ) = −d ln E d3σ(hahb→hX)
d3p

d ln(pT )
(11)

of the cross section.

We first concentrate on RHIC kinematics at y = 0, where rather low values of xT ∼ 0.03

can be reached. Therefore, we drop all factors describing the large xR behavior of the cross

section and determine neff from the running coupling only. Different choices of the hard

scale change numerical results by only few percent. We also checked that the (1− xR) term

is numerically irrelevant. Results are shown in Fig. 1. For the lowest order process 2 → 2

process we find that the effective power neff approximately increases by unity. This is close

to what is seen in direct photon production at RHIC (neff ≈ 5) [11].

Following the suggestion of one of us (SJB), the PHENIX collaboration has analyzed

the scaling properties of data [12]. For neutral pions, a value of neff = 6.33 ± 0.54 has

6

In the exclusive limit x1,2 → (1 ± xF )/2 (xF is Feynman x), both momentum fraction ap-

proach unity, so that only valence partons are important. Hence, inclusive hadron production

at very large rapidity is unaffected by gluon saturation. Such coherence effects disappear at

the largest xF . (The authors of Ref. [8] come to a similar conclusion from a different view-

point.) This shows that the high energy limit of QCD cannot be completely described by the

color glass condensate [9]. However, (nearly) exclusive reactions at ΛQCD " pT " √
s still

allow one to study perturbative QCD processes in a kinematic regime where Regge theory

applies.

III. PHENOMENOLOGICAL APPLICATIONS

In real QCD the nominal power laws discussed in the previous section receive corrections

from the breaking of scale invariance in QCD, i.e. from the running coupling and the scale

breaking of structure functions and fragmentation functions. These corrections have been

discussed a long time ago in Ref. [10] but have not yet been studied quantitatively.

Including scaling violations, the inclusive cross section of Eq. (7) changes to

E
d3σ(hahb → hX)

d3p
=

[
αs(p2

T )

p2
T

]nactive−2 (1 − xR)2ns−1+3ξ(pT )

xλ(pT )
R

α2ns
s (k2

xR
)f(y). (9)

The threshold behavior of the cross section follows from spectator counting rules [10]. We

ignore here an extra contribution to this power which arises from helicity mismatch in the

fragmentation process. The strong coupling constant α2ns
s (k2

xR
) (ns is the number of spectator

fields) arises at large momentum fraction, since all spectators must combine their momentum

to produce one high-x quark. This quark is far off-shell with virtuality k2
x = −k2

T +m̃2
q

1−x , so

that the high-x tail of the structure function is calculable in perturbative QCD. Here, kT is

the transverse momentum of the quark and m̃q is related to the quark mass, see Ref. [10]

for details.

Eq. (9) matches smoothly onto the exclusive limit xR → 1. This is still true in the presence

of scaling violations: the correction to the simple power 2ns − 1 due to gluon radiation is

contained in the function

ξ(pT ) =
CR

π

∫ p2
T

k2
xR

dk2
⊥

k2
⊥

αs(k
2
⊥) =

4CR

β0
ln

ln(p2
T /Λ2

QCD)

ln(k2
xR

/Λ2
QCD)

. (10)
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breaking of structure functions and fragmentation functions. These corrections have been

discussed a long time ago in Ref. [10] but have not yet been studied quantitatively.

Including scaling violations, the inclusive cross section of Eq. (7) changes to

E
d3σ(hahb → hX)

d3p
=

[
αs(p2

T )

p2
T

]nactive−2 (1 − xR)2ns−1+3ξ(pT )

xλ(pT )
R

α2ns
s (k2

xR
)f(y). (9)

The threshold behavior of the cross section follows from spectator counting rules [10]. We

ignore here an extra contribution to this power which arises from helicity mismatch in the

fragmentation process. The strong coupling constant α2ns
s (k2

xR
) (ns is the number of spectator

fields) arises at large momentum fraction, since all spectators must combine their momentum

to produce one high-x quark. This quark is far off-shell with virtuality k2
x = −k2

T +m̃2
q

1−x , so

that the high-x tail of the structure function is calculable in perturbative QCD. Here, kT is

the transverse momentum of the quark and m̃q is related to the quark mass, see Ref. [10]

for details.

Eq. (9) matches smoothly onto the exclusive limit xR → 1. This is still true in the presence

of scaling violations: the correction to the simple power 2ns − 1 due to gluon radiation is

contained in the function

ξ(pT ) =
CR

π

∫ p2
T

k2
xR

dk2
⊥

k2
⊥

αs(k
2
⊥) =

4CR

β0
ln

ln(p2
T /Λ2

QCD)

ln(k2
xR

/Λ2
QCD)

. (10)

4

We shall assume that at high pT , the inclusive cross section takes a factorized form, even

if the microscopic mechanism is higher twist,

dσ(hahb → hX) =
∑
abc

Ga/ha
(xa)Gb/hb

(xb)dxadxb
1

2ŝ
|Afi|2 dXfDh/c(zc)dzc. (4)

The dimensionless functions Ga/ha
(xa) describe the momentum distributions of partons of

type a in hadron ha, where a may stand for quarks and gluons as well as for composite degrees

of freedom, such as diquarks and intrinsic hadrons. These functions cannot be calculated

perturbatively, except in the limits xa,b → 1. For quarks and gluons, the scale dependence of

the distribution functions is described by the DGLAP evolution equations, but the evolution

of color-neutral degrees of freedom is suppressed by at least one power of the hard scale,

since gluon radiation off color neutral objects is suppressed. Similar observations can be

made for the fragmentation function Dh/c(zc), which accounts for the transition of a parton

c into a hadron h with momentum fraction zc = x1/xa + x2/xb. The amplitude of the hard

subprocess Afi is assumed to be calculable in perturbative QCD. Integration and summation

over all unobserved variables, such as the phase space dXf of the final state, is understood.

By keeping all ratios of Mandelstam variables fixed, the x dependence of the distribution

functions does not affect the scaling behavior of the hadronic cross section. The factorization

hypothesis Eq. (4) then yields the power law

E
d3σ(hahb → hX)

d3p
=

f(t/s, u/s)

snactive−2
, (5)

which reflects the mass dimension of the microscopic amplitude. Hence, the inclusive cross

section multiplied by pn
T with

n = 2nactive − 4, (6)

is a function of the dimensionless variables y and xR only,

E
d3σ(hahb → hX)

d3p
=

F (y, xR)

pn(y,xR)
T

. (7)

This is the desired relation: the pT dependence of the inclusive cross section is directly related

to the number of participants nactive in the microscopic matrix element. In higher twist

processes, the function F (y, xR) also depends on the hadron distribution amplitudes, which

neff  ~ 4.5

Pirner, Raufeisen, sjb



 

pu

neff = 4

nactive =  4
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u

p
gu→ γu

pp→ γX
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pp→ γX

E dσ
d3p
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Figure 9: (left) xT scaling [52] of direct photon data in p-p and p-p̄ collisions. The quantity plotted is

(
√
s)n×Ed3!/dp3(xT ) with n = 5.0. (right) xT scaling of jet cross sections measured in p-p̄ collisions by

CDF and D0 [55]. The quantity plotted is the ratio of p4T times the invariant cross section as a function of

xT for
√
s= 630 and 1800 GeV. Note that the theory curves are plotted in the same way in order to avoid as

much as possible uncertainties from the various parton distribution functions used.

of approximately 15 GeV/fm3. The theory curve appears to show a reduction in suppression with

increasing pT , while, as noted above, the data appear to be flat to within the errors, which clearly

could still be improved.

It is unreasonable to believe that the properties of the medium have been determined by a

theorist’s line through the data which constrains a few parameters of a model. The model and

the properties of the medium must be able to be verified by more detailed and differential mea-

surements. All models of medium induced energy loss [60] predict a characteristic dependence of

the average energy loss on the length of the medium traversed. This is folded into the theoretical

calculations with added complications that the medium expands during the time of the collision,

etc [61]. In an attempt to separate the effects of the density of the medium and the path length

traversed, PHENIX [33, 62] has studied the dependence of the #0 yield as a function of the an-

gle ($% ) to the reaction plane in Au+Au collisions (see Fig. 12). For a given centrality, variation

of $% gives a variation of the path-length traversed for fixed initial conditions, while varying the

centrality allows the initial conditions to vary. Clearly these data reveal much more activity than

the reaction-plane-integrated RAA (Fig. 11) and merit further study by both experimentalists and

theorists.

The point-like scaling of direct photon production in Au+Au collisions indicated by the ab-

13

E dσ
d3p

(pp→ γX)

√
snE dσ

d3p
(pp→ γX) at fixed xT

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

xF

xT-scaling of 
direct photon 
production is 

consistent with 
PQCD
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a given
√
s fall below the asymptote at successively lower values of xT with increasing

√
s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.

Although xT -scaling provides a rather general test of the validity QCD without reference to details,

the agreement of the PHENIX measurement of the invariant cross section for !0 production in p-p

collisions at
√
s= 200 GeV [30] with NLO pQCD predictions over the range 2.0≤ pT ≤ 15 GeV/c

(Fig. 4) is, nevertheless, impressive.
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Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization
and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0
production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
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GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11

Particle ratio changes with centrality! 

Review of hard scattering and jet analysis Michael J. Tannenbaum

[36] Eqs. 3.4 and 3.5 are exact to the extent that the probability of a member of the !-pair or e+e−-pair to
have any energy up to energy of the parent is constant. This is exact for "0 decay, Eq. 3.4, but is only

approximate for conversions, Eq. 3.5, where asymmetric energies of the pair are somewhat

favored [37].

[37] F. W. Büsser, et al., CCRS Collaboration, Nucl. Phys. B 113, 189–245 (1976).

[38] M. May et al. Phys. Rev. Lett. 35, 407–410 (1975). Note that this article measures the ratio of µ−p
to µ−A in DIS, but precisely the same factor of A for scaling the point-like cross section applies.

[39] R. Vogt Heavy Ion Physics 9, 399 (1999) [nucl-th/9903051].

[40] F. W. Büsser, et al., CCRS Collaboration, Phys. Lett. B 53, 212–216 (1974).

[41] M. J. Tannenbaum, “Lepton and Photon Physics at RHIC”, Proc. 7th Workshop on Quantum

Chromodynamics, La Citadelle, Villefranche-sur-Mer, France, January 6–10, 2003, Eds. H. M. Fried,

B. Muller, Y. Gabellini (World Scientific, Singapore, 2003) pp 25–38 [nucl-ex/0406023].

[42] M. Shimomura, et al., PHENIX Collaboration, Proc. 18th Int’l Conf. on Ultra-Relativistic

Nucleus-Nucleus Collisions–Quark Matter 2005 (QM’05) Budapest, Hungary, Aug. 4–9, 2005, Nucl.

Phys. A 774, 457–460 (2006) [nucl-ex/0510023].

[43] It is important to note that the effective fractional energy loss estimated from the shift in the pT

spectrum is less than the real average fractional energy loss of a parton at a given pT . The effect is

similar to that of trigger bias and for the same reason–the steeply falling pT spectrum. For a given

observed pT , the events at larger p
′
T with larger energy loss tend to be lost under the events with

smaller p′T with smaller energy loss.

[44] S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. C 69, 034910 (2004) [nucl-ex/0308006].

[45] S. S. Adler et al. PHENIX Collaboration Phys. Rev. Lett. 91, 172301 (2003).

[46] V. Greco, C. M. Ko and P. Levai Phys. Rev. Lett. 90, 202302 (2003).

[47] R. J. Fries, B. Müller and C. Nonaka Phys. Rev. Lett. 90, 202303 (2003).

[48] R. C. Hwa Eur. Phys. J. C 43, 233–237 (2005) and references therein.

[49] S. S. Adler et al. PHENIX Collaboration Phys. Rev. C 71, 051902(R) (2005).

[50] H. Fritzsch and P. Minkowski, Phys. Lett. B 69, 316 (1977).

[51] Proceedings of the Polarized Collider Workshop, University Park, PA (1990), Eds. J. Collins,

S. Heppelmann and R. W. Robinett, AIP conf. proc. No. 223, (AIP, New York, 1991).

[52] S. S. Adler et al., PHENIX Collaboration, “Measurement of direct photon production in p+ p

collisions at
√
s= 200 GeV”, Submitted to Phys. Rev. Lett. , hep-ex/0609031.

[53] M. Werlen, “Perturbative photons in pp collisions at RHIC energies”, seminar at BNL, Upton, NY,

June 21, 2005.

http://spin.riken.bnl.gov/rsc/write-up/Riken-BNL-werlen.pdf

[54] P. Aurenche, et al., Eur. Phys. J. C 9, 107-119 (1999).

[55] G. C. Blazey and B. L. Flaugher, Ann. Rev. Nucl. Part. Sci. 49, 633–685 (1999).

[56] J. Adams, et al., STAR Collaboration, Phys. Lett. B 637, 161–169 (2006) [nucl-ex/0601033].

[57] S. J. Brodsky, H. J. Pirner and J. Raufeisen, Phys. Lett. B 637, 58–63 (2006).

39

Review of hard scattering and jet analysis Michael J. Tannenbaum

 (GeV/c)Tp

0 1 2 3 4

R
a

ti
o

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
proton/pion

 (GeV/c)Tp

0 1 2 3 4 5

anti-proton/pion

Au+Au 0-10%

Au+Au 20-30%

Au+Au 60-92%

 = 53 GeV, ISRsp+p, 

, gluon jets, DELPHI-e+e

, quark jets, DELPHI-e+e

 (GeV/c)Tp
0 1 2 3 4

c
o

ll
d

y
 /
 N

2 T
N

/d
p

2
 d
!

 1
/2

10
-6

10
-5

10
-4

10
-3

10
-2

coll
proton / N

 = 200 GeVNNsAu+Au 

 (GeV/c)Tp
0 1 2 3 4

collanti-proton / N

60-92%

40-50%

20-30%

0-10%

 = 200 GeVNNsPHENIX: Au+Au 

Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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Evidence for  Direct, Higher-Twist 
Subprocesses

• Anomalous power behavior at fixed xT

• Protons more likely to come from direct 
subprocess than pions

• Protons less absorbed than pions in central 
nuclear collisions because of color transparency

• Predicts increasing proton to pion ratio in central 
collisions

• Exclusive-inclusive connection at xT = 1
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“Dangling Gluons”
• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are not probability 
distributions

• Nuclear Shadowing, Antishadowing-  Not in Target WF

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY                   distribution at leading twist from double ISI-- not given 
by PQCD factorization -- breakdown of factorization!

• Wilson Line Effects not 1 even in LCG

• Must correct hard subprocesses for initial and final-state soft gluon 
attachments

• Corrections to Handbag Approximation in DVCS

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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