Novel Initial-State and Final-State Interactions in QCD

Stan Brodsky, SLAC

JLab Conference on Exclusive Reactions

May 24, 2007

Deep Inelastic Electron-Proton Scattering

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Deep Inelastic Electron-Proton Scattering

Final-state interactions of struck quark can be neglected

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Stan Brodsky, SLAC

Physics of Rescattering

- Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

Novel ISI and FSI QCD Interactions

JLab Exclusive May 24, 2007

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

6

$$\frac{F_{2}(q^{2})}{2M} = \sum_{a} \int [dx][d^{2}\mathbf{k}_{\perp}] \sum_{j} e_{j} \frac{1}{2} \times \text{Drell, sjb}$$

$$\begin{bmatrix} -\frac{1}{q^{L}} \psi_{a}^{\uparrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\downarrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) + \frac{1}{q^{R}} \psi_{a}^{\downarrow *}(x_{i}, \mathbf{k}'_{\perp i}, \lambda_{i}) \psi_{a}^{\uparrow}(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}) \end{bmatrix}$$

$$\mathbf{k}'_{\perp i} = \mathbf{k}_{\perp i} - x_{i}\mathbf{q}_{\perp} \qquad \mathbf{k}'_{\perp j} = \mathbf{k}_{\perp j} + (1 - x_{j})\mathbf{q}_{\perp}$$

$$\mathbf{k}_{\perp i} = q^{x} \pm iq^{y}$$

Must have $\Delta \ell_z = \pm 1$ to have nonzero $F_2(q^2)$

Same matrix elements appear in Sivers effect

-- connection to quark anomalous moments Novel ISI and FSI QCD Interactions

JLab Exclusive May 24, 2007

p, S, = -1/2

Stan Brodsky, SLAC

p+q, S,=1/2

Anomalous gravitomagnetic moment B(0)

Okun et al: B(O) Must vanish because of Equivalence Theorem

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

Final-State Interactions Produce Pseudo T-Odd (Sivers Effect)

- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite

JLab Exclusive

May 24, 2007

Novel ISI and FSI QCD Interactions

9

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

May 24, 2007

JLab Exclusive

Prediction for Single-Spin_ Asymmetry

Hwang, Schmidt, sjb

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

and produce a T-odd effect! (also need $L_z \neq 0$)

HERMES coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002. Sivers asymmetry from HERMES

- First evidence for non-zero Sivers function!
- ⇒ presence of non-zero quark
 orbital angular momentum!
- Positive for π⁺...
 Consistent with zero for π⁻...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous

moment

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

Sivers SSA cancels on an isospin zero target -gluon contribution to the Sivers asymmetry small small gluon contribution to orbital angular momentum of nucleon

Gardner, sjb

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

Recent COMPASS data on deuteron: small Sivers effect

- The anomalous magnetic moment, the Sivers function, and the generalized parton distribution E can all be connected to matrix elements involving the orbital angular momentum of the nucleon's constituents.
- The SSA can be generated by either a quark or gluon mechanism, and the isospin structure of the two mechanisms is distinct. The approximate cancellation of the SSA measured on a deuterium target suggests that the gluon mechanism, and thus the orbital angular momentum carried by gluons in the nucleon, is small.
- Studies of the SSA in ϕ or K^+K^- production, via $\gamma^*g \rightarrow s\bar{s} \rightarrow \phi + X$ or $\gamma^*g \rightarrow s\bar{s} \rightarrow K^+K^- + X$ should provide additional constraints on the gluon mechanism.

Gardner, sjb

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Predict Opposite Sign SSA in DY!

Collins; Hwang, Schmidt. sjb

Single Spin Asymmetry In the Drell Yan Process $\vec{S}_p \cdot \vec{\vec{p}} \times \vec{q}_{\gamma^*}$

Quarks Interact in the Initial State

Interference of Coulomb Phases for *S* and *P* states

Produce Single Spin Asymmetry [Siver's Effect]Proportional

to the Proton Anomalous Moment and α_s .

JLab Exclusive

May 24, 2007

Opposite Sign to DIS! No Factorization

Novel ISI and FSI QCD Interactions

15

DY $\cos 2\phi$ correlation at leading twist from double ISI

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Stan Brodsky, SLAC

DY $\cos 2\phi$ correlation at leading twist from double ISI

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

Anomalous effect from Double ISI ín Massíve Lepton Productíon

Boer, Hwang, sjb

 $\frac{P_2}{\rightarrow}$

 $\frac{P_2}{\longrightarrow}$

 $\cos 2\phi$ correlation

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

Problem for factorization when both ISI and FSI occur

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Remarkable observation at HERA

10% to 15% of DIS events are díffractive !

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q_{DA}^2 for two ranges of x_{DA} . No acceptance corrections have been applied.

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

DDIS

- In a large fraction (~ 10–15%) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- The t-channel exchange must be color singlet → a pomeron??

Diffractive Deep Inelastic Lepton-Proton Scattering

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

de Roeck

Diffractive Structure Function F₂^D

Diffractive inclusive cross section

$$\begin{aligned} \frac{\mathrm{d}^3 \sigma_{NC}^{diff}}{\mathrm{d} x_{I\!\!P} \,\mathrm{d}\beta \,\mathrm{d}Q^2} &\propto & \frac{2\pi\alpha^2}{xQ^4} F_2^{D(3)}(x_{I\!\!P},\beta,Q) \\ F_2^D(x_{I\!\!P},\beta,Q^2) &= & f(x_{I\!\!P}) \cdot F_2^{I\!\!P}(\beta,Q^2) \end{aligned}$$

extract DPDF and xg(x) from scaling violation

Large kinematic domain $3 < Q^2 < 1600 \, {\rm GeV^2}$ Precise measurements sys 5%, stat 5–20 %

Final-State Interaction Produces Diffractive DIS

Low-Nussinov model of Pomeron

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Final State Interactions in QCD

Feynman Gauge Ligh

Light-Cone Gauge

Result is Gauge Independent

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

- Rescattering gluons have small momenta
 - $\Rightarrow \beta$ dependence of diffractive PDFs arises from underlying (nonperturbative) $g \rightarrow q\bar{q}$ and $g \rightarrow gg$

Effective IP distribution and quark structure function:

$$\begin{split} f_{I\!\!P/p}(x_{I\!\!P}) &\propto g(x_{I\!\!P},Q_0^2) \\ f_{q/I\!\!P}(\beta,Q_0^2) &\propto \beta^2 + (1-\beta)^2 \end{split}$$

 Diffractive amplitudes from rescattering are dominantly imaginary — as expected for diffraction (Ingelman–Schlein IP model has real amplitudes)

S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne and F. Sannino, Phys. Rev. D 65, 114025 (2002) [arXiv:hep-ph/0104291].S. J. Brodsky, R. Enberg, P. Hoyer and G. Ingelman, arXiv:hep-ph/0409119.

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Enberg, Hoyer, Ingelman, sjb

The Pomeron formalism

 F_2^D is fitted to HERA data \longrightarrow good description

Lines given by fit with NLO QCD evolution

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Consequences for DDIS

- Underlying hard scattering sub-process is the same in diffractive and non-diffractive events
- **Same** Q^2 dependence of diffractive and inclusive PDFs
- and same energy (W or x_B) dependence
- $\Rightarrow \frac{\sigma_{\text{diff}}}{\sigma_{\text{tot}}} \text{ independent of } x_B \text{ and } Q^2 \text{ (as in data)}$ Also describes: vector meson leptoproduction BGMFS
- Note:
 - In pomeron models the ratio depends on $x_B^{1-\alpha_{I\!P}}$ which is ruled out
 - In a two-gluon model with two hard gluons, the diffractive cross section depends on $[f_{g/p}(x_B, Q^2)]^2$

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Rescattering toy model

BHMPS: Toy model - scalar abelian gauge theory:

 $x_B \rightarrow 0$: on-shell intermediate states \rightarrow imag. 2-gluon ampl. as required for pomeron from crossing symmetry

Rescattering factorizes in coordinate space!

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

$$Q^4 \frac{d\sigma}{dQ^2 \, dx_B} = \frac{\alpha_{\rm em}}{16\pi^2} \frac{1-y}{y^2} \frac{1}{2M\nu} \int \frac{dp_2^-}{p_2^-} \, d^2 \vec{r}_T \, d^2 \vec{R}_T \, |\tilde{M}|^2$$

where

$$|\tilde{M}(p_2^-, \vec{r}_T, \vec{R}_T)| = \left|\frac{\sin\left[g^2 W(\vec{r}_T, \vec{R}_T)/2\right]}{g^2 W(\vec{r}_T, \vec{R}_T)/2}\tilde{A}(p_2^-, \vec{r}_T, \vec{R}_T)\right|$$

is the resummed result. The Born amplitude is

$$\tilde{A}(p_2^-, \vec{r}_T, \vec{R}_T) = 2eg^2 M Q p_2^- V(m_{||} r_T) W(\vec{r}_T, \vec{R}_T)$$

 $V(m r_T) \equiv \int \frac{d^2 \vec{p}_T}{(2\pi)^2} \frac{e^{i\vec{r}_T \cdot \vec{p}_T}}{p_T^2 + m^2} = \frac{1}{2\pi} K_0(m r_T).$ oct of the dipole of the where $m_{||}^2 = p_2^- M x_B + m^2$ and

The rescattering effect of the dipole of the $q\overline{q}$ is controlled by

$$W(\vec{r}_T, \vec{R}_T) \equiv \int \frac{d^2 \vec{k}_T}{(2\pi)^2} \frac{1 - e^{i\vec{r}_T \cdot \vec{k}_T}}{k_T^2} e^{i\vec{R}_T \cdot \vec{k}_T} = \frac{1}{2\pi} \log\left(\frac{|\vec{R}_T + \vec{r}_T|}{R_T}\right).$$

Precursor of Nuclear Shadowing

BHMPS

J	Lab Exclusive
	May 24, 2007

Novel ISI and FSI QCD Interactions

Hard Díffractíve Hadron-Hadron Collísíons

- Single diffractive + high P_T
- Double diffractive + high P_T
- Heavy quarks diffractive

Bartels, Goulianis, Mueller, BFKL, Kovchegov, Maor, Khoze, Peigne, Gay Ducati Kopeliovitch, Schmidt, sjb

- Lepton pair diffractive (Berman, Levy, Yan 1969)
- Nuclear dependence $\sigma(pA \rightarrow J/\psi X) \propto A^{2/3}$ at high x_F

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

Predict: Reduced DDIS/DIS for Heavy Quarks

Reproduces lab-frame color dipole approach

JLab Exclusive

May 24, 2007

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

Intrinsic Charm Mechanism for Exclusive Diffraction Production

 $p p \rightarrow J/\psi p p$

$$x_{J/\psi} = x_c + x_{\bar{c}}$$

Exclusive Diffractive High-X_F Higgs Production

Kopeliovitch, Schmidt, Soffer, sjb

Intrinsic $c\bar{c}$ pair formed in color octet 8_C in pro-ton wavefunctionLarge Color DipoleCollision produces color-singlet J/ψ throughcolor exchangeRHIC Experiment

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

Intrínsic Charm Mechanism for Exclusive Díffraction Production

Kopeliovitch, Schmidt, Soffer, sjb

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

Hadronization at the Amplitude Level $e^+e^- \rightarrow H^+H^- + X$ Bjorken, Lu, sjb Kopeliovich, Large $\Delta y = |y_H - y_X|$ Schmidt, sjb H^{-} H^+ e^{-}

Timelike Pomeron.C=+Gluonium TrajectoryLarge Rapidity Gap Events

Crossing analog of Diffractive DIS $eH \rightarrow eH + X$

Novel ISI and FSI QCD Interactions

38

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

Timelike OdderonLarge Rapidity Gap EventsC= -Gluonium Trajectory

 H^+H^- asymmetry from Odderon-Pomeron interference

Novel ISI and FSI QCD Interactions

Stan Brodsky, SLAC

JLab Exclusive May 24, 2007

May 24, 2007

Stodolsky Pumplin, sjb Gribov

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twistdiffraction in DIS

Nuclear Shadowing not included in nuclear LFWF!

Dynamical effect due to virtual photon interacting in nucleus

Novel ISI and FSI QCD Interactions

JLab Exclusive May 24, 2007

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \ge L_A.$

If the scattering on nucleon N_1 is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \overline{q} flux reaching N_2 .

 \rightarrow Shadowing of the DIS nuclear structure functions.

Observed HERA DDIS produces nuclear shadowing

JLab Exclusive May 24, 2007 Novel ISI and FSI QCD Interactions

Shadowing depends on understanding leadingtwist-diffraction in DIS

Integration over on-shell domain produces phase i Need Imaginary Phase to Generate Pomeron.

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Stan Brodsky, SLAC

Origin of Regge Behavior of Deep Inelastic Structure Functions

Antiquark interacts with target nucleus at energy $\hat{s} \propto \frac{1}{x_{hi}}$

Regge contribution: $\sigma_{\bar{q}N} \sim \hat{s}^{\alpha_R-1}$

Nonsinglet Kuti-Weisskoff $F_{2p} - F_{2n} \propto \sqrt{x_{bj}}$ at small x_{bj} .

Shadowing of $\sigma_{\overline{q}M}$ produces shadowing of nuclear structure function.

Landshoff, Polkinghorne, Short

Close, Gunion, sjb

Schmidt, Yang, Lu, sjb

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

The one-step and two-step processes in DIS on a nucleus.

If the scattering on nucleon N_1 is via C = - Reggeon or Odderon exchange, the one-step and two-step amplitudes are **constructive in phase, enhancing** the \overline{q} flux reaching N_2

 \rightarrow Antishadowing of the DIS nuclear structure functions

H. J. Lu, sjb Schmidt, Yang, sjb

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Phase of two-step amplitude relative to one step:

$$\frac{1}{\sqrt{2}}(1-i) \times i = \frac{1}{\sqrt{2}}(i+1)$$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ^*, Z^0, W^{\pm}

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference of Two-Step and One-Step Processes *Pomeron Exchange*

• Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange

 Antishadowing is Not Universal!
 Electromagnetic and weak currents: different nuclear effects !
 Potentially significant for NuTeV Anomaly} Jian-Jun Yang Ivan Schmidt Hung Jung Lu sjb

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Shadowing and Antishadowing of DIS Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, "Nuclear Antishadowing in Neutrino Deep Inelastic Scattering," Phys. Rev. D 70, 116003 (2004) [arXiv:hep-ph/0409279].

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

Nuclear Effect not Universal!

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

 $\pi N \rightarrow \mu^+ \mu^- X$ at high x_F In the limit where $(1-x_F)Q^2$ is fixed as $Q^2 \rightarrow \infty$

Berger and Brodsky, PRL 42 (1979) 940

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Berger, Lepage, sjb

Novel ISI and FSI QCD Interactions

JLab Exclusive May 24, 2007 Stan Brodsky, SLAC

$$\pi^- N \rightarrow \mu^+ \mu^- X$$
 at 80 GeV/c

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2\theta + \rho \sin^2\theta \cos\phi + \omega \sin^2\theta \cos^2\phi.$$

$$\frac{d^2\sigma}{dx_{\pi}d\cos\theta} \propto x_{\pi} \left[(1-x_{\pi})^2 (1+\cos^2\theta) + \frac{4}{9} \frac{\langle k_T^2 \rangle}{M^2} \sin^2\theta \right]$$

$$\langle k_T^2 \rangle = 0.62 \pm 0.16 \text{ GeV}^2/c^2$$

Dramatic change in angular distribution at large x_F

Example of a higher-twist direct subprocess

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Baryon can be made directly within hard subprocess

Crucial Test of Leading -Twist QCD: Scaling at fixed x_T

$$E\frac{d\sigma}{d^3p}(pN \to \pi X) = \frac{F(x_T, \theta_{CM})}{p_T^{neff}}$$

 $n_{eff} = 4$

Bjorken scaling

Conformal scaling: $n_{eff} = 2 n_{active} - 4$

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

Stan Brodsky, SLAC

PQCD prediction: Modification of power fall-off due to DGLAP evolution and the Running Coupling

Key test of PQCD: power fall-off at fixed x_T

$$d\sigma(h_a h_b \to hX) = \sum_{abc} G_{a/h_a}(x_a) G_{b/h_b}(x_b) dx_a dx_b \frac{1}{2\hat{s}} \left|A_{fi}\right|^2 dX_f D_{h/c}(z_c) dz_c.$$

$$E\frac{d^3\sigma(h_ah_b \to hX)}{d^3p} = \frac{F(y, x_R)}{p_T^{n(y, x_R)}}$$

 $n = 2n_{active} - 4,$

Pirner, Raufeisen, sjb

$$n_{eff}(p_T) = -\frac{d\ln E \frac{d^3\sigma(h_a h_b \to hX)}{d^3 p}}{d\ln(p_T)} \qquad n_{eff} - 4.5$$

$$E\frac{d^{3}\sigma(h_{a}h_{b} \to hX)}{d^{3}p} = \left[\frac{\alpha_{s}(p_{T}^{2})}{p_{T}^{2}}\right]^{n_{active}-2} \frac{(1-x_{R})^{2n_{s}-1+3\xi(p_{T})}}{x_{R}^{\lambda(p_{T})}}\alpha_{s}^{2n_{s}}(k_{x_{R}}^{2})f(y).$$
$$\xi(p_{T}) = \frac{C_{R}}{\pi} \int_{k_{x_{R}}^{2}}^{p_{T}^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}}\alpha_{s}(k_{\perp}^{2}) = \frac{4C_{R}}{\beta_{0}}\ln\frac{\ln(p_{T}^{2}/\Lambda_{QCD}^{2})}{\ln(k_{x_{R}}^{2}/\Lambda_{QCD}^{2})}.$$

 $\sqrt{s}^n E \frac{d\sigma}{d^3 p} (pp \to \gamma X)$ at fixed x_T

Tannenbaum

x_T-scaling of direct photon production is consistent with PQCD

 $E\frac{d\sigma}{d^3p}(pp \to HX) = \frac{F(x_T, \theta_{CM})}{p_T^{n_{eff}}}$

S. S. Adler *et al.* PHENIX Collaboration *Phys. Rev. Lett.* **91**, 172301 (2003). *Particle ratio changes with centrality!*

Open (filled) points are for π^{\pm} (π^{\cup}), respectively.

Baryon can be made directly within hard subprocess

Evidence for Dírect, Hígher-Twist Subprocesses

- Anomalous power behavior at fixed x_T
- Protons more likely to come from direct subprocess than pions
- Protons less absorbed than pions in central nuclear collisions because of **color transparency**
- Predicts increasing proton to pion ratio in central collisions
- Exclusive-inclusive connection at $x_T = I$

JLab Exclusive May 24, 2007

Novel ISI and FSI QCD Interactions

65

"Dangling Gluons"

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing- Not in Target WF
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY $\cos 2\phi$ distribution at leading twist from double ISI-- not given by PQCD factorization -- breakdown of factorization!
- Wilson Line Effects not 1 even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments
- Corrections to Handbag Approximation in DVCS

Hoyer, Marchal, Peigne, Sannino, sjb

JLab Exclusive May 24, 2007 **Novel ISI and FSI QCD Interactions**

66