

Spin-Orbit Correlations and SSAs

Matthias Burkardt

burkardt@nmsu.edu

New Mexico State University

Las Cruces, NM, 88003, U.S.A.

Outline

GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs

•
$$H(x, 0, -\mathbf{\Delta}_{\perp}^2) \longrightarrow q(x, \mathbf{b}_{\perp})$$

$$\quad \tilde{H}(x,0,-\boldsymbol{\Delta}_{\perp}^2) \longrightarrow \Delta q(x,\mathbf{b}_{\perp})$$

- $E(x, 0, -\Delta_{\perp}^2)$
 - $\hookrightarrow \bot$ deformation of unpol. PDFs in \bot pol. target
 - physics: orbital motion of the quarks
- \hookrightarrow intuitive explanation for SSAs (Sivers)
- intuitive explanation for Miller-effect

- $\longrightarrow \perp$ deformation of \perp pol. PDFs in unpol. target
- correlation between quark angular momentum and quark transversity
- \hookrightarrow Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$
- Are all Boer-Mulders functions alike?
- Summary

Impact parameter dependent PDFs

• define \perp localized state

$$\left|p^{+},\mathbf{R}_{\perp}=\mathbf{0}_{\perp},\lambda\right\rangle\equiv\mathcal{N}\int d^{2}\mathbf{p}_{\perp}\left|p^{+},\mathbf{p}_{\perp},\lambda
ight
angle$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has $\mathbf{R}_{\perp} \equiv \frac{1}{P^+} \int dx^- d^2 \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x) = \sum_i x_i \mathbf{r}_{i,\perp} = \mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

$$q(x, \mathbf{b}_{\perp}) \equiv \int \frac{dx^{-}}{4\pi} \langle p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} | \bar{q}(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}) \gamma^{+} q(\frac{x^{-}}{2}, \mathbf{b}_{\perp}) | p^{+}, \mathbf{R}_{\perp} = \mathbf{0}_{\perp} \rangle e^{ixp^{+}x^{-}}$$

$$\hookrightarrow \qquad q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i \mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H(x, 0, -\mathbf{\Delta}_{\perp}^2), \\ \Delta q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{i \mathbf{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}(x, 0, -\mathbf{\Delta}_{\perp}^2)$$

Impact parameter dependent PDFs

- corollary (G.Miller's talk): Interpretation of two-dimensional Fourier transform of F_1 as j^+ charge distribution in impact parameter space; equivalent interpretation: FT of usual j^0 charge distribution accross the pizza (after nucleon has been boosted to ∞ momentum)
- analogously, impact parameter dependent distribution of quarks with ± helicity in longitudinally polarized nucleons obtained from 2d FT of ¹/₂ (F₁ ± G_A)

Transversely Deformed Distributions and $E(x, 0, -\Delta_{\perp}^2)$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

So far: only unpolarized (or long. pol.) nucleon! In general ($\xi = 0$):

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \uparrow \right\rangle = H(x, 0, -\Delta_{\perp}^{2})$$

$$\int \frac{dx^{-}}{4\pi} e^{ip^{+}x^{-}x} \left\langle P + \Delta, \uparrow \left| \bar{q}(0) \gamma^{+}q(x^{-}) \right| P, \downarrow \right\rangle = -\frac{\Delta_{x} - i\Delta_{y}}{2M} E(x, 0, -\Delta_{\perp}^{2}).$$

- Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \uparrow\rangle + |p^+, \mathbf{R}_{\perp} = \mathbf{0}_{\perp}, \downarrow\rangle.$
- \hookrightarrow unpolarized quark distribution for this state:

$$q(x,\mathbf{b}_{\perp}) = \mathcal{H}(x,\mathbf{b}_{\perp}) - \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} E(x,0,-\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$$

Physics: $j^+ = j^0 + j^3$, and left-right asymmetry from j^3 !
[X.Ji, PRL 91, 062001 (2003)]

Intuitive connection with \vec{L}_q

- DIS probes quark momentum density in the infinite momentum frame (IMF). Quark density in IMF corresponds to $j^+ = j^0 + j^3$ component in rest frame (\vec{p}_{γ^*} in $-\hat{z}$ direction)
- \hookrightarrow j^+ larger than j^0 when quarks move towards the γ^* ; suppressed when they move away from γ^*
- \hookrightarrow For quarks with positive orbital angular momentum in \hat{x} -direction, j^z is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side

- Details of \perp deformation described by $E_q(x, 0, -\Delta_{\perp}^2)$
- \rightarrow not surprising that $E_q(x, 0, -\Delta_{\perp}^2)$ enters Ji relation!

$$\left\langle J_q^i \right\rangle = S^i \int dx \left[H_q(x,0,0) + E_q(x,0,0) \right] \, x.$$
 Spin-C

 \hat{z}

Transversely Deformed PDFs and $E(x, 0, -\Delta_{\perp}^2)$

mean \perp deformation of flavor q (\perp flavor dipole moment)

$$d_y^q \equiv \int dx \int d^2 \mathbf{b}_\perp q_X(x, \mathbf{b}_\perp) b_y = \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q^p}{2M}$$

with $\kappa_{u/d}^p \equiv F_2^{u/d}(0) = \mathcal{O}(1-2) \quad \Rightarrow \quad d_y^q = \mathcal{O}(0.2fm)$

 \checkmark simple model: for simplicity, make ansatz where $E_q \propto H_q$

$$E_u(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \frac{\kappa_u^p}{2} H_u(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$
$$E_d(x,0,-\boldsymbol{\Delta}_{\perp}^2) = \kappa_d^p H_d(x,0,-\boldsymbol{\Delta}_{\perp}^2)$$

with $\kappa_{u}^{p} = 2\kappa_{p} + \kappa_{n} = 1.673$ $\kappa_{d}^{p} = 2\kappa_{n} + \kappa_{p} = -2.033.$

Model too simple but illustrates that anticipated deformation is very significant since κ_u and κ_d known to be large!

Spin-Orbit Correlations and SSAs - p.9/38

\perp flavor dipole moments \leftrightarrow Ji-relation

[M.B., PRD72, 094020 (2005)]

■ $J_{\perp}^{q} \propto \perp$ center of momentum (COM)

$$J_y^q = \frac{M}{4} \sum_i x_i b_i^y$$

Note: two terms in $J_x^q \sim \int d^3r T^{tz} b^y - T^{ty} b^z$ equal by rot. inv.!

- ▶ ⊥ COM for quark flavor *q* at $y = \frac{1}{2M} \int dx \, x E^q(x, 0, 0)$ (nucleon with COM at $\mathbf{R}_{\perp} = \mathbf{0}_{\perp}$ and polarized in \hat{x} direction)
- additional \perp displacement of the whole nucleon by $\frac{1}{2M}$ from boosting \perp polarized nucleon wave packet from rest frame to ∞ momentum frame (Melosh ...)
- \hookrightarrow when \perp polarized nucleon is boosted from rest to ∞ momentum, \perp flavor dipole moment for quarks with flavor q is

$$\frac{1}{2M} \int dx \, x E^q(x,0,0) + \frac{1}{2M} \int dx \, xq(x) \qquad (\rightsquigarrow \text{ Ji relation})$$

SSAs in SIDIS $(\gamma + p \uparrow \longrightarrow \pi^+ + X)$

momentum distribution of outgoing π^+ as convolution of momentum distribution of quarks in enucleon \hookrightarrow unintegrated parton density $f_{q/p}(x, \mathbf{k}_{\perp})$ momentum distribution of π^+ in jet D^{π} (z, \mathbf{p}_{\perp}) created by leading quark q \hookrightarrow fragmentation function $D_a^{\pi^+}(z, \mathbf{p}_{\perp})$ $q(x, \mathbf{k}_{\perp})$ average \perp momentum of pions obtained as sum of average \mathbf{k}_{\perp} of quarks in nucleon (Sivers effect) average \mathbf{p}_{\perp} of pions in quark-jet (Collins effect)

use factorization (high energies) to express

GPD \longleftrightarrow **SSA** (Sivers)

Sivers: distribution of unpol. quarks in \perp pol. proton

$$f_{q/p^{\uparrow}}(x,\mathbf{k}_{\perp}) = f_1^q(x,\mathbf{k}_{\perp}^2) - f_{1T}^{\perp q}(x,\mathbf{k}_{\perp}^2) \frac{(\hat{\mathbf{P}}\times\mathbf{k}_{\perp})\cdot S}{M}$$

- without FSI, $\langle \mathbf{k}_{\perp} \rangle = 0$, i.e. $f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}^2) = 0$
- with FSI, $\langle \mathbf{k}_{\perp} \rangle \neq 0$ (Brodsky, Hwang, Schmidt)
- Why interesting?
 - \perp asymmetry involves nucleon helicity flip
 - quark density chirally even (no quark helicity flip)
 - ↔ 'helicity mismatch' requires orbital angular momentum (OAM)
 - \hookrightarrow (like κ), Sivers requires matrix elements between wave function components that differ by one unit of OAM (Brodsky, Diehl, ...)
 - Sivers requires nontrivial final state interaction phases
 - \hookrightarrow sensitive to space-time structure of hadrons

⊥ Single-Spin Asymmetry (Sivers)

 \checkmark treat FSI to lowest order in g

 \hookrightarrow

$$\left\langle k_{q}^{i}\right\rangle = -\frac{g^{2}}{4p^{+}}\int\frac{d^{2}\mathbf{b}_{\perp}}{2\pi}\frac{b^{i}}{\left|\mathbf{b}_{\perp}\right|^{2}}\left\langle p,s\left|\bar{q}(0)\gamma^{+}\frac{\lambda_{a}}{2}q(0)\rho_{a}(\mathbf{b}_{\perp})\right|p,s\right\rangle$$

with $\rho_a({\bf b}_\perp)=\int dr^-\rho_a(r^-,{\bf b}_\perp)$ summed over all quarks and gluons

- → SSA related to dipole moment of density-density correlations
- **9** GPDs (N polarized in $+\hat{x}$ direction): $u \longrightarrow +\hat{y}$ and $d \longrightarrow -\hat{y}$
- $\hookrightarrow \text{ expect density density correlation to show same asymmetry } \langle b^y \bar{u}(0) \gamma^+ \frac{\lambda_a}{2} u(0) \rho_a(\mathbf{b}_{\perp}) \rangle > 0$
- \hookrightarrow sign of SSA opposite to sign of distortion in position space

GPD
$$\longleftrightarrow$$
 SSA (Sivers)

• example:
$$\gamma p
ightarrow \pi X$$
 (Breit frame)

٩

attractive FSI deflects active quark towards the center of momentum

- \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction
- \hookrightarrow correlation between sign of κ_q^p and sign of SSA: $f_{1T}^{\perp q} \sim -\kappa_q^p$

• $f_{1T}^{\perp q} \sim -\kappa_q^p$ confirmed by Hermes results (also consistent with COMPASS $f_{1T}^{\perp u} + f_{1T}^{\perp d} \approx 0$)

$$\int dx \sum_{i \in q,g} f_{1T}^{\perp q}(x, \mathbf{k}_{\perp}) \mathbf{k}_{\perp}^2 = 0.$$

non-trivial sum rule, not a trivial consequence of momentum conservation (cf. Schäfer Teryaev sum rule for fragmentation) as it does not involve a summation over the whole final state, but only over active partons

 $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})_{DY} = -f_{1T}^{\perp}(x, \mathbf{k}_{\perp})_{SIDIS}$

• time reversal: $FSI \leftrightarrow ISI$

$\hookrightarrow f_{1T}^{\perp}(x, \mathbf{k} - \perp)_{DY} = -f_{1T}^{\perp}(x, \mathbf{k} - \perp)_{SIDIS}$ (Collins)

- Intuitive explanation (for simplicity first in QED)
 - compare FSI for bound e^- that is being knocked out with ISI for e^+ that is about to annihilate that bound e^-
 - FSI for knocked out e^- is attractive
 - ISI for the to-be-annihilated e^+ due to the spectators is repulsive.
 - annihilation local in \mathbf{b}_{\perp}
 - $\hookrightarrow \perp$ impulse opposite to \perp impuls on e^- , since both are at same \perp position
 - no \perp impulse due to force from to-be-annihilated e^- as it is approached head-on
 - \hookrightarrow (after averaging over longitudinal positions of bound e^-) \perp impulse in SIDIS must be equal and opposite to \perp impulse in DY

 $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})_{DY} = -f_{1T}^{\perp}(x, \mathbf{k}_{\perp})_{SIDIS}$

• time reversal: $FSI \leftrightarrow ISI$

$\hookrightarrow f_{1T}^{\perp}(x, \mathbf{k} - \perp)_{DY} = -f_{1T}^{\perp}(x, \mathbf{k} - \perp)_{SIDIS}$ (Collins)

- Intuitive explanation (QCD)
 - compare FSI for 'red' q that is being knocked out with ISI for an anti-red \bar{q} that is about to annihilate that bound q
 - \hookrightarrow FSI for knocked out q is attractive
 - In nucleon is color singlet \rightarrow when to-be-annihilated q is 'red', the spectators must be anti-red
 - \hookrightarrow anti-red spectators and anti-red approaching \bar{q} repel each other
 - $\, \hookrightarrow \, \, \text{ISI is repulsive} \,$
 - no \perp impulse due to force from to-be-annihilated q as it is approached head-on
 - \hookrightarrow (after averaging over longitudinal positions of bound q) \perp impulse in SIDIS must be equal and opposite to \perp impulse in DY

Intuitive Explanation for the 'Miller-Effect'

Intuitive Explanation for the 'Miller-Effect'

Intuitive Explanation for the 'Miller-Effect'

- Miller-effect: 2d FT of F_1^n
- \hookrightarrow suppression of u quarks/enhancement of d quarks in center of neutron-pizza (in IMF)
- Explanation: several indications that, in proton, d-quarks in proton have larger p-wave component than u-quarks
 - after charge factors taken out, contribution from d quarks to anomalous magnetic moment of proton larger than from u quarks ($\kappa_u^p = 1.673$, $\kappa_d^p = -2.033$) despite the fact that proton contains more u quarks.
 - HERMES: Sivers function for d quarks (in proton) at least as large as for u quarks — despite the fact that proton contains more u quarks.
- \hookrightarrow (in neutron), u quarks should have larger p-wave component than d quarks
- *p* wave suppressed at origin!
- \hookrightarrow suppression of u quarks at center of neutron due to larger p-wave component

$$\int \frac{dx^{-}}{2\pi} e^{ixp^{+}x^{-}} \left\langle p' \left| \bar{q} \left(-\frac{x^{-}}{2} \right) \sigma^{+j} \gamma_{5} q \left(\frac{x^{-}}{2} \right) \right| p \right\rangle = H_{T} \bar{u} \sigma^{+j} \gamma_{5} u + \tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u \\ + E_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} \Delta_{\alpha} \gamma_{\beta}}{2M} u + \tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j\alpha\beta} P_{\alpha} \gamma_{\beta}}{M} u$$

- See also M.Diehl+P.Hägler, hep-ph/0504175.
- Fourier trafo of $\bar{E}_T^q \equiv 2\tilde{H}_T^q + E_T^q$ for $\xi = 0$ describes distribution of transversity for <u>un</u>polarized target in \perp plane

$$q^{i}(x,\mathbf{b}_{\perp}) = \frac{\varepsilon^{ij}}{2M} \frac{\partial}{\partial b_{j}} \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} \bar{E}_{T}^{q}(x,0,-\mathbf{\Delta}_{\perp}^{2})$$

origin: correlation between quark spin (i.e. transversity) and angular momentum

Transversity Distribution in Unpolarized Target

- SIDIS: attractive FSI expected to convert position space asymmetry into momentum space asymmetry
- \hookrightarrow e.g. quarks at negative b_x with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
- \hookrightarrow (qualitative) connection between Boer-Mulders function $h_1^{\perp}(x, \mathbf{k}_{\perp})$ and the chirally odd GPD \overline{E}_T that is similar to (qualitative) connection between Sivers function $f_{1T}^{\perp}(x, \mathbf{k}_{\perp})$ and the GPD E.
- **Boer-Mulders**: distribution of \perp **pol.** quarks in **unpol.** proton

$$f_{q^{\uparrow}/p}(x,\mathbf{k}_{\perp}) = \frac{1}{2} \left[f_1^q(x,\mathbf{k}_{\perp}^2) - \frac{h_1^{\perp q}(x,\mathbf{k}_{\perp}^2)}{M} \frac{(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}) \cdot S_q}{M} \right]$$

▶ $h_1^{\perp q}(x, \mathbf{k}_{\perp}^2)$ can be probed in DY (RHIC, J-PARC, GSI) and tagged SIDIS (JLab, eRHIC), using Collins-fragmentation

- consider semi-inclusive pion production off unpolarized target
- spin-orbit correlations in target wave function provide correlation between (primordial) quark transversity and impact parameter
- \hookrightarrow (attractive) FSI provides correlation between quark spin and \perp quark momentum \Rightarrow BM function
- Collins effect: left-right asymmetry of π distribution in fragmentation of \bot polarized quark \Rightarrow 'tag' quark spin
- $\hookrightarrow \cos(2\phi)$ modulation of π distribution relative to lepton scattering plane
- \hookrightarrow cos(2 ϕ) asymmetry proportional to: Collins \times BM

\perp polarization and γ^* absorption

- QED: when the γ^* scatters off \perp polarized quark, the \perp polarization gets modified
 - gets reduced in size
 - gets tilted symmetrically w.r.t. normal of the scattering plane

lepton scattering plane

quark transversity component in lepton scattering plane flips

on average, FSI deflects quarks towards the center

Collins-Effect

- When a \perp polarized struck quark fragments, the strucure of jet is sensitive to polarization of quark
- distribution of hadrons relative to \(\box) polarization direction may be left-right asymmetric
- asymmetry parameterized by Collins fragmentation function
- Artru model:
 - struck quark forms pion with \bar{q} from $q\bar{q}$ pair with ${}^{3}P_{0}$ 'vacuum' quantum numbers
 - \hookrightarrow pion 'inherits' OAM in direction of \perp spin of struck quark
 - → produced pion preferentially moves to left when looking into direction of motion of fragmenting quark with spin up
- Artru model confirmed by HERMES experiment
- more precise determination of Collins function under way (BELLE)

SSA of π in jet emanating from \perp pol. q

 \hookrightarrow in this example, enhancement of pions with \perp momenta \perp to lepton plane

 \hookrightarrow expect enhancement of pions with \bot momenta \bot to lepton plane

Chirally Odd GPDs (sign)

- LC-wave function representation: matrix element for <u>F</u> involves [M.B.+B.Hannafious, hep-ph/0705.1573] quark helicity flip
- → interference between wave function components that differ by one unit of OAM (e.g. s-p interference)
- \hookrightarrow sign of \overline{E}_T depends on rel. sign between s & p components
- bag model: p-wave from lower component

$$\Psi_m = \begin{pmatrix} if\chi_m \\ -g(\vec{\sigma}\cdot\hat{\vec{x}})\chi_m \end{pmatrix},$$

(relative sign from free Dirac equation $g = \frac{1}{E} \frac{d}{dr} f$)

- more general potential model: $\frac{1}{E} \rightarrow \frac{1}{E-V_0(r)+m+V_S(r)}$
- \hookrightarrow sign of \overline{E}_T same as in Bag model!

Chirally Odd GPDs: sign (M.B. + Brian Hannafious)

- relativistic constituent model: spin structure from SU(6) wave functions plus "Melosh rotation"
 - $\hookrightarrow \bar{E}_T > 0$ (B.Pasquini et al.)
 - origin of sign: "Melosh rotation" is free Lorentz boost
 - → relative sign between upper and lower component same as for free Dirac eq. (bag)
- diquark models: nucleon structure from perturbative splitting of spin $\frac{1}{2}$ 'nucleon' into quark & scalar/a-vector diquark: $\overline{E}_T > 0$
 - \bullet origin of sign: interaction between q and diquark is point-like
 - \hookrightarrow except when q & diquark at same point, q is noninteracting
 - \hookrightarrow relative sign between upper and lower component same as for free Dirac eq. (bag)
- NJL model (pion): $\overline{E}_T > 0$ origin of sign: NJL model also has contact interaction!
- Iattice QCD (*u*, *d* in nucleon; pion): $\overline{E}_T > 0$ (P.Hägler et al.)

Chirally Odd GPDs (magnitude)

• large
$$N_C$$
: $\bar{E}_T^u = \bar{E}_T^d$

- Bag model/potential models: correlation between quark orbit and quark spin same for all quark states (regardless whether $j_z = +\frac{1}{2}$ or $j_z = -\frac{1}{2}$)
- \hookrightarrow all quark orbits contribute coherently to $\bar{E_T}$
- compare *E* (anomalous magnetic moment), where quark orbits with $j_z = +\frac{1}{2}$ and $j_z = -\frac{1}{2}$ contribute with opposite sign
- \hookrightarrow *E*, which describes correlation between quark OAM and nucleon spin <u>smaller</u> than \bar{E}_T , which describes correlation between quark OAM and quark spin: $\bar{E}_T > |E|$
- \blacksquare potential models: $\bar{E}_T \propto \#$ of $q \Rightarrow \bar{E}_T^u = 2\bar{E}_T^d$
- $\hookrightarrow \text{ expect } 2\bar{E}_T^d > \bar{E}_T^u > \bar{E}_T^d$
- all of the above confirmed in LGT calcs. (e.g. P.Hägler et al.)

IPDs on the lattice (Hägler et al.)

Iowest moment of distribution of unpol. quarks in \perp pol. proton (left) and of \perp pol. quarks in unpol. proton (right):

Transversity decomposition of J_q

$$J^i = \frac{1}{2} \varepsilon^{ijk} \int d^3x \left[T^{0j} x^k - T^{0k} x^j \right]$$

J^x_q diagonal in transversity, projected with $\frac{1}{2}(1 \pm \gamma^x \gamma_5)$, i.e. one can decompose

$$J_q^x = J_{q,+\hat{x}}^x + J_{q,-\hat{x}}^x$$

where $J_{q,\pm\hat{x}}^x$ is the contribution (to J_q^x) from quarks with positive (negative) transversity

 → derive relation quantifying the correlation between ⊥ quark spin and angular momentum [M.B., PRD72, 094020 (2006); PLB639, 462 (2006)]

$$\left\langle J_{q,+\hat{y}}^{y} \right\rangle = \frac{1}{4} \int dx \left[H_{T}^{q}(x,0,0) + \bar{E}_{T}^{q}(x,0,0) \right] x$$

(note: this relation is <u>not</u> a decomposition of J_q into transversity and orbital)

Summary

- **GPDs** $\stackrel{FT}{\longleftrightarrow}$ IPDs (impact parameter dependent PDFs)
- $E(x, 0, -\Delta_{\perp}^2) \longrightarrow \bot$ deformation of PDFs for \bot polarized target
- \hookrightarrow origin for deformation: orbital motion of the quarks
- \hookrightarrow simple mechanism (attractive FSI) to predict sign of f_{1T}^q

$$f_{1T}^u < 0 \qquad \qquad f_{1T}^d > 0$$

- Intuitive explanation for 'Miller-effect': $|\vec{L}_{u/n}| > |\vec{L}_{d/n}|$
- distribution of \perp polarized quarks in unpol. target described by chirally odd GPD $\bar{E}_T^q = 2\bar{H}_T^q + E_T^q$
- \hookrightarrow origin: correlation between orbital motion and spin of the quarks
- \hookrightarrow attractive FSI \Rightarrow measurement of h_1^{\perp} (DY,SIDIS) provides information on \bar{E}_T^q and hence on spin-orbit correlations
- expect:

$$h_1^{\perp,q} < 0 \qquad \qquad |h_1^{\perp,q}| >$$

 $|f_{1T}^q|$