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Photon Photon leptoproductionleptoproduction
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interference of DVCSDVCS and BetheBethe--HeitlerHeitler processes
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relations among CFFs and harmonics is based on          expansion

(whole amplitude, including leptonic part at twist-3 level):

CFFs are given in terms of generalized parton distributions

Compton form factor

observable

hard scattering part

perturbation theory

(our conventions)

GPDGPD

universal 

(but conventional) 
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How good is this How good is this approximationapproximation??

i. at least three different definitions of scaling variables are used:

physical definition: ξ = −(q1+q2)
2

2(P1+P2)·(q1+q2)
, η = (P1−P2)·(q1+q2)

(P1+P2)·(q1+q2)
,

partonic definition: ξ′ = −n·q1
n·(P1+P2)

, ξ = n·(P1−P2)
n·(P1+P2)

n2=0 definition of n 

is ambiguous !

Bjorken limit
ξ = ξ′ + O(∆2/Q2) + O(x2BjM

2/Q2) ⇒ xBj
2−xBj

different kinematical conventions yield different GPDs (different corrections)

for fixed target kinematics there is a  5% - 10% uncertainty (scaling variable)

for the time being one perhaps can agree on                     (? DDVS)

ξ = η, xBj = 2ξ
1+ξ , Q2 = −q21

imaginary part of a CFF reads then at LO:

F = π
(
F (ξ =

xBj
2−xBj

, η =
xBj
2−xBj

,∆2,Q2)± {ξ → −ξ}
)



e.g., real part of the interference term for scalar target,

unpolarized beam  JLAB kinematics:

iii. treatment of  squared amplitude

numerically squared [VGG code] leads to the question: What can we extract?

square first and expand to get analytic expressions [A.V. Belitsky, DM., A. Kirchner]

numerical differences between both treatments for fixed target kinematics 

take exact leptonic part and differences should diminish, e.g., in c1

xBj = 0.3, t = −0.3GeV2, Q2 = 2GeV2

ii. various definitions of DVCS-tensor/amplitude 

parameterization should lead to `convenient’ relations of CFFs and helicity amplitudes 

not a too small number

I ∝ −2.3ℜH− 12.9ℜH cos(φ) + 1.1ℜH3 cos(2φ) + · · · cos(3φ)

∝−2.43ℜ [H−0.06H3] −7.54ℜ [H+0.02H3]cos(φ) +1.2ℜ [H3−0.64HT ]cos(2φ)+ · · ·

√
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)
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)
×
[
1
2(2− y)2 · · ·+ · · ·
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A popular GPD A popular GPD ansatzansatz

Radyushkin’s ansatz for spectral function is within p=0: 

constraints:constraints: � polynomiality is satisfied

� partonic form factor – related to observables

� parton densities

! positivity constraints [P.Pobylitsa] (requirement on GPDs and scheme)

∫ 1
0 dy q(∆2)f(y,∆2)

q(y,∆2 = 0)

! D-term and pion pole contribute only to the real part of the amplitude

F = {H,E, H̃, Ẽ, · · · }spectral representation is not unique and reads  for

Polyakov, Weiss suggestions 

F (x, η,∆2) =

∫ 1

−1

dy

∫ 1−|y|

−1+|y|

dzxpδ(x− y − zη)f(y, z,∆2) + θ(|η| − |x|)|η|P−1S
(
x

η
,∆2

)

E : p = 0, P = 1, S(x,∆2) = D(x,∆2)

Ẽ : P = 0, S(x,∆2) pion pole contribution

$

f(y, z,∆2) = F (∆2)q(y,∆2)
Π(z/(1− y))

(1− y)
,

∫ 1

−1

dz Π(z) = 1, Π(z) ≥ 0;



Support of Support of GPDsGPDs –– a hint for dualitya hint for duality

a naive dual interpretation on partonic level:

central region  - η < x < η

mesonic exchange in t-channel

outer region η < x

partonic exchange in s-channel

F = θ(−η ≤ x ≤ 1)ω
(
x, η,∆2

)
+ θ(η ≤ x ≤ 1)ω

(
x,−η,∆2

)

support extension 

is unique [DM et al. 92]

ambiguous (D-term)
[DM, A. Schäfer (05)]

consider a quark GPD (anti-quark x → -x)

ω
(
x, η,∆2

)
=

1

η

∫ x+η
1+η

0

dy xpf(y, (x− y)/η,∆2)



How to get more insight into How to get more insight into GPDsGPDs??

S
baryonic

resonances

FF
mesonic

resonances

S
C

F

=

dualityduality
=

� lattice simulations of GPD moments (first few, heavy pion world)  [QCDSF,LHPC,…]

� bag model [Ji et al.], quark soliton model [Göke et al,…], BS-equation [Miller,…], ….

� overlap representation of LC wave functions [Brodsky, Diehl, Feldman, Kroll, …]

� approaches to describe hard amplitudes (better understanding as for GPDs)

- resumming s-channel resonances [Close, Zhao]

- vector dominance & Regge inspired description [Guidal et al., M. Capua et al., …]

s

t

s-channel contributions 

(resonance region, large x)

t-channel contributions 

(Regge phenomenology, small x)  

??

take models (`knowledge’) for the amplitude and extract GPDs



SO(2,1) (conformal) expansion of SO(2,1) (conformal) expansion of GPDsGPDs
GPD support is a consequence of Poincaré invariance (polynomiality)

inverse relation is given by a Mellin-Barnes integral:

conformal moments evolve autonomously (LO & NLO in a special scheme) 

reletated representations were proposed:

• smearing method [B. Geyer, A. Belitsky, D.M., L. Niedermeier, A. Schäfer (97/99)]
• mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]

• dual parameterization (a mixture of both) [M. Polyakov, A. Shuvaev (02)]
• based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]

• Mellin-Barnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

µ
d

dµ
Fn(η,∆2, µ2) = −αs(µ)

2π
γ(0)n Fn(η,∆2, µ2)
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∫ 1

−1

dx cn(x, η)F (x, η,∆2, µ2) , cn(x, η) = ηnC3/2
n (x/η)
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0
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αs(σ)
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SO(2,1) partial waves 
(Legendre functions)

analytic continuation of
conformal GPD moments

(polynomials)

evolution 
(trivial)



A closer look to the tA closer look to the t--channel processchannel process

mesonic

resonances

S C

F

C F

crossing

SO(3) partial wave expansion of helicity amplitudes in cm frame:

- reduced 
Wigner matrices

for twist-two CFFs we have m = m = ≤ 2, e.g.,H, E , H̃, Ẽ

H+ E =
∞∑

J=2

(2J + 1) cot(θ)AJ
↑↑

[
dJ2,1(θ) + (−1)JdJ−2,1(θ)

]

E =
∞∑

J=2
even

(2J + 1)dJ2,0(θ)AJ
↑↓ +

4M2

s̄− 4M2
(H+ E)

A
(t)

b̄d;ac̄
=

∞∑

J=Jmin

(2J + 1) dJb̄−d,a−c̄(θ)AJ
b̄d;ac̄(s̄, ū) , dJµ,ν(θ)

q̄2 q1

P̄1

P2

z
θcm

︸︷︷︸
|m| = 2



for large virtualities we can employ (conformal) OPE

(Taylor expansion with respect to                               )

angular momentum J partial wave expansion of GPD moments:

crossing yields

F
(t)
j (cos θ, s, µ2) =

j+1∑

J=Jmin
even/odd

(2J + 1)FJ
j (s, µ2)ωF(θ)dJF(θ)

! matching scale should be rather low

! the forward limit is `nontrivial’ 

α(t) = α(0) + α′t

Regge trajectories

Q2 ∼ 1GeV2, η � 0.05

contrary to some claims about small x GPD behavior

ϑ = (q21 − q22)/Q2 = η/ξ

Fj(η, t) ∼
∑

α

F j+1,α
j (t)

j+1−α(t) +
∑

α γj+1−α(t)(t)η
j+1−α(t)

leading SO(3) partial waveleading SO(3) partial wave remaining onesremaining ones

F (t) ≃
∞∑

j=0

[1∓ (−1)j ] ϑj+1 Cj(ϑ,Q
2/µ2, αs(µ))F

(t)
j (cos θ, s, µ2)

Fj(η) = ηj+1F
(t)
j (θ), cos θ ∼ −1/η,

Fj(η → 0, t) ∼ β(t)
j+1−α(t) + γ(t)ηj+1−α(t)



Ansatz for partonic partial wave amplitudes

� at short distance a quark/anti-quark state 

is produced, labeled by conformal spin j+2

(helicity conservation)

� they form an intermediate mesonic state 

with total angular momentum J
strength of coupling is

� mesons propagate with

� decaying into a nucleon anti-nucleon pair 

with given spin S and angular momentum L,

described by an impact form factor

! GPD E is zero if chiral symmetry holds

(partial waves are Gegenbauer polynomials with index 3/2)

D-term arises from the SO(3) partial wave J=j+1  (j      -1)

F J
j (∆2) =

fJj
J − α(∆2)

1

(1− ∆2

M2(J))
p

1
m2(J)−t ∝ 1

J−α(t)

P̄1 P2

γ∗

q̄

γ(∗)

q
fJj

fJj , J ≤ j + 1



Constraints for Constraints for partonicpartonic partial wave amplitudespartial wave amplitudes

� moments of parton distributions

� partonic form factors 

� angular momentum sum rule

� positivity constraints?

� lattice results for higher moments suggest a J dependent cut off-mass M2(J)

F J=j+1
j (∆2 = 0) =

f j+1j

j + 1− α(∆2 = 0)

F J=1
j=0 (∆2) =

f10
1− α(∆2)

1

(1− ∆2

M2(0) )
p

(H + E)J=2j=1 (∆2) =
(h + e)21

2− α(∆2)

1

(1− ∆2

M2(1) )
p

∞∑

j=0
even

Cj+J(ϑ,Q2/µ2, αs(µ
2))F J

j+J(∆2, µ2) ≥ 0



PerturbativePerturbative and higher twist correctionsand higher twist corrections

� perturbative next--to--leading order corrections [conformal approach D.M. (94)]

� hard  scattering part for photon/meson electroproduction [A. Belitsky, D.M. (00,01)]

� flavor singlet part for meson electroproduction [D. Ivanov, L. Szymanowski (04) ]

�for all then flavor singlet twist--two anomalous dimensions [A. Belitsky, D.M. (98)]

�and flavor singlet twist--two evolution kernels [A. Belitsky, D.M., A. Freund (99,00)]

� perturbative next--to--next--to--leading order corrections to DVCS
[D.M. (05);  K.Kumerićki, K.Passek-Kumerićki, D.M., A. Schäfer (06/07)]

� evaluation of higher twist contributions

�completing the twist-three sector [A. Belitsky, D.M. (00)]

� target mass corrections (twist-4) to photon electroproduction [A.Belitsky,D.M.(01)]

� WW-approximation to helicity flip DVCS contribution [N. Kivel, L. Mankiewicz (01)]

o higher twist corrections are not well understood



F(ξ, ϑ,∆2, Q2) =
1

π

∫ 1

0

dξ′
(

1

ξ − ξ′
∓ 1

ξ + ξ′

)
ℑmF(ξ′ − i0, ϑ,∆2,Q2) + C(ϑ,∆2,Q2)

F(ξ, ϑ,∆2, Q2) =
∞∑

j=0

[
1∓ (−1)j

]
ωj+1 Fj(ϑ,∆2,Q2) + C(ϑ,∆2,Q2) ,

Fj(· · · ) =
1∓ (−1)j

2π

∫ 1

0

dξ ξj ℑmF(ξ − i0, · · · )

ii. Taylor expansion in the unphysical region, i.e., ω=1/ξ in the vicinity ω=0

subtraction needed for � and �

iii. (conformal) operator product expansion gives the Taylor coefficients

photon asymmetry J=h/x is 0 for DIS 1 for DVCS 

Fj ≃
∞∑

n=0
even

Cj+n(ϑ,Q2/µ2, αs(µ)) ϑn F
(n)
j+n(∆2, µ2) , F

(l)
j =

1

l!

dl

dηl
Fj(η,∆

2, µ2)
∣∣∣
η=0

,

Dispersion relation & conformal OPEDispersion relation & conformal OPE

i. use analyticity with respect to ν = s−u
4M = Q2

2M ξ−1

Wilson coefficientsWilson coefficients Taylor expansion of GPD momentsTaylor expansion of GPD moments



iv. invert Mellin transform yields conformal partial wave expansion:

F =
1

2i

∫ c+i∞

c−i∞

dj ξ−j−1
[
i +

{
tan

− cot

}(
πj

2

)]
Cj(Q2/µ2, αs(µ))Fj(ξ,∆

2, µ2)

� integration path is parallel to the imaginary axis, where 

singularities (Regge poles and cuts) are on the l.h.s.

� for a scheme that respects conformal symmetry:

� Cj and gj are known to NNLO (from DIS)

� Conformal symmetry breaking (arising from the trace anomaly)

is shifted to the NNLO evolution and remains unknown

�standard MS scheme can be also implemented to NLO

various representations of that kind are well known

• smearing method [B. Geyer, A. Belitsky, D.M., L. Niedermeier, A. Schäfer (97/99)]

• generating function, resummation of SO(3) partial waves [M. Polyakov, A. Shuvaev (02)]
• Mellin-Barnes representation [DM, A. Schäfer (05); also A. Manashov, M. Kirch, A. Schäfer (05)]

GPD moments contain GPD moments contain 

subtraction constantsubtraction constant
Wilson coefficientsWilson coefficients

(hard scattering)(hard scattering)
signaturesignature



Remarks on the subtraction constantRemarks on the subtraction constant
subtraction constant is predicted by the OPE:

it is expressed by the coefficients of the highest possible power in η

appearing in the conformal GPD moments  (D-term contribution)     

Is the subtraction constant related to the imaginary part?Is the subtraction constant related to the imaginary part?

predicted to be zero for � + �

and in forward kinematics

yes, for the case of oversubtraction C(ϑ, . . .) =
2

π

∫ ∞

0

dξ ξ−1ℑmE(ξ, ϑ, . . .)

C(ϑ,∆2, Q2) ≃ 2
∞∑

n=2
even

Cn−1(ϑ,Q
2/µ2, αs(µ))ϑnE

(n)
n−1(∆

2, µ2) ,

C(ϑ = 0,∆2, Q2) ≃ 0

likely, in reality

only a Kronecker-δ singularity in the j plane justifies an independent D-term

C(ϑ, . . .) =
2

π
lim
j→−1

{∫ ∞

0

dξ ξj ℑm [E(ξ, ϑ, . . .)− E(ξ, ϑ = 0, . . .)]

}

AC

fixed pole
Brodsky, Close, Gunion (72)



NLO & NNLO corrections NLO & NNLO corrections –– nonnon--singletsinglet

� NLO corrections are moderate & factorization scale dependence is strongly reduced

� at NNLO  perturbation theory is stabilizing for hard-scattering part and evolution

� both factorization and renormalization scale dependencies are reduced to 2% and 3% 

K. Kumerički, D.M., A. Schäfer
K. Passek-Kumerički (06/07)



NLO & NNLO correctionsNLO & NNLO corrections–– singlet sectorsinglet sector

� NLO corrections strongly depend on the gluon entry

� at NNLO drastically reduction of perturbative corrections to the hard scattering part

& reduction of renormalization scale dependence

� but perturbative predictions for the evolution is unstable 

no improvement of factorization scale dependence 



Ready for a GPD fitting procedure?Ready for a GPD fitting procedure?

hypothesis of GPD momentshypothesis of GPD moments
(a set of parameters)

experimental dataexperimental data
DESY, COMPASS, JLAB

GeParDGeParD a N(N)LO routine

for the evaluation of gen. FFasymmetries asymmetries 

cross sectionscross sections

fitting procedurefitting procedure
(MINUIT)

observables observables 
(in terms of gen. FF)

partially YES but it is NOT completed yet:

• reasonable well motivated hypotheses of GPD moments must be implemented

• some technical, however, straightforward work is left 
(like a reevaluation of observables)

[K. Kumerički, D.M., K. Passek-Kumerički, hep-ph/0703179]



Lessons from DVCS fits for H1 and ZEUS dataLessons from DVCS fits for H1 and ZEUS data

DVCS cross section has been measured in the small               region

suppressed contributions  <<0.05>> relative O(ξ)

and it is predicted by

ξ = Q2/(2W 2 +Q2)

dσ

d∆2
(W,∆2,Q2) ≈ 4πα2

Q4
W 2ξ2

W 2 +Q2
[
|H|2 − ∆2

4M2
p

|E|2 +
∣∣∣H̃
∣∣∣
2
] (

ξ,∆2,Q2
) ∣∣∣

ξ= Q2

2W2+Q2

LO [Belitsky, DM, Kirchner (01), Guzey, Teckentrup (06)]

data are described within questionable t-slope parameters

NLO [Freund, M. McDermott (02)]

results strongly depend on used parton density parameterization

do a simultaneous fit to DIS and DVCSdo a simultaneous fit to DIS and DVCS

40GeV �W � 150GeV, 2GeV2 � Q2 � 80GeV2, |t| � 0.8GeV2



HΣ
j (η,∆2, µ20) = NΣ

B(1− αΣ(0) + j, 8)

B(2− αΣ(0), 8)

1

1− ∆2

(mΣ
j )

2

1
(

1− ∆2

(MΣ
j )

2

)3 +O(η2)

HG
j (η,∆2, µ20) = NG

B(1− αG(0) + j, 6)

B(2− αG(0), 6)

1

1− ∆2

(mG
j )

2

1
(

1− ∆2

(MG
j )

2

)2 +O(η2)

some simplifications in the ansatz:

� neglecting h dependence

� only designed for small x (no momentum sum rule)

� flavor non-singlet contribution is neglected (5% effect)

� fixed numbers of quarks (nf=4)

parameters @ fixed input scale Q2 = 4 GeV2

� 2x normalization N, 2x  intercept α, 2x cut-off mass M0

� little sensitivity of slope α’ (=0.15/GeV2 ) 

� little sensitivity on j-dependence in Mj

AnsatzAnsatz for conformal GPD momentsfor conformal GPD moments



simultaneous simultaneous 

NNLO fit to NNLO fit to 

DVCS and DISDVCS and DIS

LO & MS NLO fits 

are not optimal

missing parameter

neglecting h is justified

? just luck

CS beyond LO 

yields good fits



Can one do better?Can one do better?
YesYes, introduce a distribution of SO(3) partial waves in conformal GPD moments

toy example: take two partial waves h dependence can be safely neglected

effective relative strength of remaining partial waves

now we get a very good LO fit:

� fixed sG = 0,   M=MG = MΣ

� Χ2/d.o.f. = 0.52,  sΣ = -0.75,  

� other parameters are consistent with previous fits 

NΣ =0.14, αΣ = 1.20, NG=0.8, αG =1.16

� Χ2
t = 2.61,  M2 = 0.86

Fj(η,∆
2) =

f j+1j

(1− ∆2

M2(j+1) )
p

(
1

j + 1− α(∆2)
PF
j+1 (η) +

s η2

j − 1− α(∆2)
PFj−1 (η)

)

`negative’ skewness dependence is required at LO



PartonicPartonic picture:  longitudinal degreespicture:  longitudinal degrees

our fits are compatible with Alekhin’s NLO PDF parameterization:

� central value of our quark densities lies in Alekhin’s error band

� gluons are less constrained by DIS fit
(error bands would overlap)



PartonicPartonic picture:  transversal degreespicture:  transversal degrees

〈7b2〉(x,Q2) =

∫
d7b7b2H(x,7b,Q2)
∫
d7bH(x,7b,Q2)

= 4B(x,Q2)

transversal distribution of partons in the infinite momentum frame:

H(x,7b) =

∫
d27∆

(2π)2
e−i

"b·"∆H(x, η = 0,∆2 = −7∆2)

the average distance of partons is:



ConclusionsConclusions
� Mellin-Barnes representation offers a new view on GPDs

e.g., conformal GPD moments are simply related to: 

� observables are sensitive to SO(3) partial waves

� their decomposition in terms of conformal partial waves is not accessible
(except in double DVCS, or photon fusion of two virtual photons) 

� numeric is fast and reliable [even at NLO for MS scheme] 

� perturbative expansion in DVCS works – except for evolution at small x

� fitting procedure (better than comparing model A, B, ..., with data) can be set up

� a `global’ analysis of GPD related data requires NLO

i. Lattice simulations (non-negative integer j) 

ii. Regge phenomenology (complex valued j, behavior at small η)

iii. s-channel physics, i.e., behavior at large j

To do list:To do list:

� improving twist expansion for DVCS observables

� How conjectured duality can be implemented in GPD moments?

� extend formalism to hard meson electroproduction (straightforward @ NLO)


