Deeply virtual Compton scattering Theory

D. Müller, Ruhr Universität Bochum

* Observables in γ leptoproduction
* GPD ansätze - how to improve them?
* Perturbative corrections up to NNLO
* Towards a fitting procedure

Conclusions

Photon leptoproduction

 cross section for $e^{ \pm} N \rightarrow e^{ \pm} N \gamma$:$$
\frac{d \sigma}{d x_{\mathrm{Bj}} d y d\left|\Delta^{2}\right| d \phi_{e} d \phi_{N}}=\frac{\alpha^{3} y}{16 \pi^{2} \mathcal{Q}^{2}}\left(1+\frac{4 M_{B j}^{2}{ }^{2}}{\mathcal{Q}^{2}}\right)^{-1 / 2}\left|\frac{\mathcal{T}}{e^{3}}\right|^{2}
$$

$$
\begin{aligned}
x_{\mathrm{Bj}} & =\frac{\mathcal{Q}^{2}}{2 P_{1} \cdot q_{1}} \approx \frac{2 \xi}{1+\xi}, \\
y & =\frac{P_{1} \cdot q_{1}}{P_{1} \cdot k}, \\
\Delta^{2} & =t \quad \text { (fixed, small) }, \\
\mathcal{Q}^{2} & =-q_{1}^{2}\left(>1 \mathrm{GeV}^{2}\right),
\end{aligned}
$$

interference of DVCS and Bethe-Heitler processes

12 Compton form factors $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}} \cdots$ elastic form factors F_{1}, F_{2} (helicity amplitudes)

$$
\begin{aligned}
& \left|\mathcal{T}_{\mathrm{BH}}\right|^{2}=\frac{e^{6}\left(1+\epsilon^{2}\right)^{-2}}{x_{\mathrm{Bj}}^{2} y^{2} \Delta^{2} \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathrm{BH}}+\sum_{n=1}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi)\right\}, \\
& \text { exactly known } \\
& \text { (LO, QED) } \\
& \left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}=\frac{e^{6}}{y^{2} \mathcal{Q}^{2}}\left\{c_{0}^{\mathrm{DVCS}}+\sum_{n=1}^{2}\left[c_{n}^{\mathrm{DVCS}} \cos (n \phi)+s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right]\right\}, \\
& \begin{array}{l}
\text { appr. known } \\
\text { harmonics } \\
工 \quad 1: 1
\end{array} \\
& \text { helicity ampl. } \\
& \mathcal{I}=\frac{ \pm e^{6}}{x_{\mathrm{Bj}^{3}}^{y} \Delta^{2} \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathcal{I}}+\sum_{n=1}^{3}\left[c_{n}^{\mathcal{I}} \cos (n \phi)+s_{n}^{\mathcal{I}} \sin (n \phi)\right]\right\} . \\
& \text { appr. known } \\
& \text { harmonics } \\
& \text { helicity ampl. }
\end{aligned}
$$

CFFs are given in terms of generalized parton distributions
$\mathcal{F}\left(\xi, \mathcal{Q}^{2}, \Delta^{2}\right)=\int_{-1}^{1} d x C\left(x, \xi, \alpha_{s}(\mu), \mathcal{Q} / \mu\right) F\left(x, \xi, \Delta^{2}, \mu\right)+O\left(1 / \mathcal{Q}^{2}\right)$

Compton form factor
hard scattering part
perturbation theory (our conventions)

GPD
universal
(but conventional) corrections
relations among CFFs and harmonics is based on $1 / \mathcal{Q}$ expansion (whole amplitude, including leptonic part at twist-3 level):

$$
\begin{aligned}
& \left\{\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right\}^{\mathcal{I}} \propto \frac{\Delta}{\mathcal{Q}} \mathrm{tw}-2(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{3}\right), \quad c_{0}^{\mathcal{I}} \propto \frac{\Delta^{2}}{\mathcal{Q}^{2}} \mathrm{tw}-2(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{4}\right), \\
& \left\{\begin{array}{l}
c_{2} \\
s_{2}
\end{array}\right\}^{\mathcal{I}} \propto \frac{\Delta^{2}}{\mathcal{Q}^{2}} \mathrm{tw}-3(\mathrm{GPDs})+O\left(1 / \mathcal{Q}^{4}\right), \quad\left\{\begin{array}{l}
c_{3} \\
s_{3}
\end{array}\right\}^{\mathcal{I}} \propto \frac{\Delta \alpha_{s}}{\mathcal{Q}}(\mathrm{tw}-2)^{\mathrm{T}}+O\left(1 / \mathcal{Q}^{3}\right), \\
& c_{0}^{\mathrm{CS}} \propto(\mathrm{tw}-2)^{2}, \quad\left\{\begin{array}{l}
c_{1} \\
s_{1}
\end{array}\right\}^{\mathrm{CS}} \propto \frac{\Delta}{Q}(\mathrm{tw}-2)(\mathrm{tw}-3), \quad\left\{\begin{array}{l}
c_{2} \\
s_{2}
\end{array}\right\}^{\mathrm{CS}} \propto \alpha_{s}(\mathrm{tw}-2)(\mathrm{tw}-2)^{\mathrm{GT}}
\end{aligned}
$$

How good is this approximation?

i. at least three different definitions of scaling variables are used:
physical definition: $\quad \xi=\frac{-\left(q_{1}+q_{2}\right)^{2}}{2\left(P_{1}+P_{2}\right) \cdot\left(q_{1}+q_{2}\right)}, \quad \eta=\frac{\left(P_{1}-P_{2}\right) \cdot\left(q_{1}+q_{2}\right)}{\left(P_{1}+P_{2}\right) \cdot\left(q_{1}+q_{2}\right)}$,
partonic definition:

$$
\xi^{\prime}=\frac{-n \cdot q_{1}}{n \cdot\left(P_{1}+P_{2}\right)}, \quad \xi=\frac{n \cdot\left(P_{1}-P_{2}\right)}{n \cdot\left(P_{1}+P_{2}\right)}
$$

$n^{2}=0$ definition of n is ambiguous !

$$
\xi=\xi^{\prime}+O\left(\Delta^{2} / \mathcal{Q}^{2}\right)+O\left(x_{\mathrm{Bj}}^{2} M^{2} / \mathcal{Q}^{2}\right) \stackrel{\text { Bjorken limit }}{\Rightarrow} \frac{x_{\mathrm{Bj}}}{2-x_{\mathrm{Bj}}}
$$

different kinematical conventions yield different GPDs (different corrections) for fixed target kinematics there is a 5\%-10\% uncertainty (scaling variable) for the time being one perhaps can agree on

$$
\xi=\eta, x_{\mathrm{Bj}}=\frac{2 \xi}{1+\xi}, \mathcal{Q}^{2}=-q_{1}^{2}
$$

imaginary part of a CFF reads then at LO:

$$
\mathcal{F}=\pi\left(F\left(\xi=\frac{x_{\mathrm{Bj}}}{2-x_{\mathrm{Bj}}}, \eta=\frac{x_{\mathrm{Bj}}}{2-x_{\mathrm{Bj}}}, \Delta^{2}, \mathcal{Q}^{2}\right) \pm\{\xi \rightarrow-\xi\}\right)
$$

ii. various definitions of DVCS-tensor/amplitude parameterization should lead to `convenient' relations of CFFs and helicity amplitudes
iii. treatment of squared amplitude
numerically squared [VGG code] leads to the question: What can we extract? square first and expand to get analytic expressions [A.V. Belitsky, DM., A. Kirchner] numerical differences between both treatments for fixed target kinematics
e.g., real part of the interference term for scalar target, unpolarized beam JLAB kinematics: $x_{\mathrm{Bj}}=0.3, t=-0.3 \mathrm{GeV}^{2}, Q^{2}=2 \mathrm{GeV}^{2}$

$$
I \propto-2.3 \Re \mathcal{H}-12.9 \Re \mathcal{H} \cos (\phi)+1.1 \Re \mathcal{H}_{3} \cos (2 \phi)+\cdots \cos (3 \phi)
$$

$\propto-2.43 \Re\left[\mathcal{H}-0.06 \mathcal{H}_{3}\right]-7.54 \Re\left[H+0.02 \mathcal{H}_{3}\right] \cos (\phi)+1.2 \Re\left[\mathcal{H}_{3}-0.64 \mathcal{H}_{T}\right] \cos (2 \phi)+\cdots$
take exact leptonic part and differences should diminish, e.g., in c_{1}

$$
\begin{gathered}
\sqrt{1-y}\left(2-2 y+y^{2}\right) \Rightarrow \sqrt{1-y\left(1+\frac{4 x_{\mathrm{Bj}}^{2} M^{2}}{\mathcal{Q}^{2}} y / 4\right)} \times\left[\frac{1}{2}(2-y)^{2} \cdots+\cdots\right] \\
\text { not a too small number }
\end{gathered}
$$

A popular GPD ansatz

spectral representation is not unique and reads for $F=\{H, E, \widetilde{H}, \widetilde{E}, \cdots\}$
$F\left(x, \eta, \Delta^{2}\right)=\int_{-1}^{1} d y \int_{-1+|y|}^{1-|y|} d z x^{p} \delta(x-y-z \eta) f\left(y, z, \Delta^{2}\right)+\theta(|\eta|-|x|)|\eta|^{P-1} S\left(\frac{x}{\eta}, \Delta^{2}\right)$
Radyushkin's ansatz for spectral function is within $p=0$:

$$
f\left(y, z, \Delta^{2}\right)=F\left(\Delta^{2}\right) q\left(y, \Delta^{2}\right) \frac{\Pi(z /(1-y))}{(1-y)}, \quad \int_{-1}^{1} d z \Pi(z)=1, \quad \Pi(z) \geq 0
$$

Polyakov, Weiss suggestions $E: \quad p=0, P=1, \quad S\left(x, \Delta^{2}\right)=D\left(x, \Delta^{2}\right)$
$\widetilde{E}: \quad P=0, \quad S\left(x, \Delta^{2}\right)$ pion pole contribution
$!D$-term and pion pole contribute only to the real part of the amplitude polynomiality is satisfied
$\checkmark \int_{0}^{1} d y q\left(\Delta^{2}\right) f\left(y, \Delta^{2}\right)$ partonic form factor - related to observables
$\checkmark q\left(y, \Delta^{2}=0\right) \quad$ parton densities
positivity constraints [P.Pobylitsa] (requirement on GPDs and scheme)

Support of GPDs - a hint for duality

 consider a quark GPD (anti-quark $x \rightarrow-x$)$$
F=\theta(-\eta \leq x \leq 1) \omega\left(x, \eta, \Delta^{2}\right)+\theta(\eta \leq x \leq 1) \omega\left(x,-\eta, \Delta^{2}\right)
$$

$$
\omega\left(x, \eta, \Delta^{2}\right)=\frac{1}{\eta} \int_{0}^{\frac{x+\eta}{1+\eta}} d y x^{p} f\left(y,(x-y) / \eta, \Delta^{2}\right)
$$

a naive dual interpretation on partonic level:

central region $-\eta<x<\eta$
mesonic exchange in t-channel

outer region $\eta<x$
partonic exchange in s-channel

How to get more insight into GPDs?

* lattice simulations of GPD moments (first few, heavy pion world) [QCDSF,LHPC,...] * bag model [Ji et al.], quark soliton model [Göke et al,...], BS-equation [Miller,...],
* overlap representation of LC wave functions [Brodsky, Diehl, Feldman, Kroll, ...]
* approaches to describe hard amplitudes (better understanding as for GPDs)
- resumming s-channel resonances [Close, Zhao]
- vector dominance \& Regge inspired description [Guidal et al., M. Capua et al., ...]
s-channel contributions (resonance region, large x)
t-channel contributions
(Regge phenomenology, small x)

take models ('knowledge') for the amplitude and extract GPDs

SO(2,1) (conformal) expansion of GPDs

GPD support is a consequence of Poincaré invariance (polynomiality)

$$
F_{n}\left(\eta, \Delta^{2}, \mu^{2}\right)=\int_{-1}^{1} d x c_{n}(x, \eta) F\left(x, \eta, \Delta^{2}, \mu^{2}\right), \quad c_{n}(x, \eta)=\eta^{n} C_{n}^{3 / 2}(x / \eta)
$$

conformal moments evolve autonomously (LO \& NLO in a special scheme)

$$
\mu \frac{d}{d \mu} F_{n}\left(\eta, \Delta^{2}, \mu^{2}\right)=-\frac{\alpha_{s}(\mu)}{2 \pi} \gamma_{n}^{(0)} F_{n}\left(\eta, \Delta^{2}, \mu^{2}\right)
$$

inverse relation is given by a Mellin-Barnes integral:
reletated representations were proposed:

- smearing method [B. Geyer, A. Belitsky, D.M., L. Niedermeier, A. Schäfer (97/99)]
${ }^{\circ}$ mapping to a kind of forward PDFs [A. Shuvaev (99), J. Noritzsch (00)]
- dual parameterization (a mixture of both) [M. Polyakov, A. Shuvaev (02)]
- based on conformal light-ray operators [Balitsky, Braun (89); Kivel, Mankewicz (99)]

Mellin-Barnes integral [DM, Schäfer (05); A. Manashov, M. Kirch, A. Schäfer (05)]

A closer look to the t-channel process

SO(3) partial wave expansion of helicity amplitudes in cm frame:

$$
A_{\bar{b} d ; a \bar{c}}^{(t)}=\sum_{J=J_{\min }}^{\infty}(2 J+1) d_{\bar{b}-d, a-\bar{c}}^{J}(\theta) A_{\bar{b} d ; a \bar{c}}^{J}(\bar{s}, \bar{u}), \quad d_{\mu, \nu}^{J}(\theta) \quad-\quad \begin{aligned}
& \text { reduced } \\
& \text { Wigner matrices }
\end{aligned}
$$

for twist-two CFFs $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ we have $m=\mu= \pm 2$, e.g.,

$$
\begin{aligned}
\mathcal{H}+\mathcal{E} & =\sum_{J=2}^{\infty}(2 J+1) \cot (\theta) A_{\uparrow \uparrow}^{J}\left[d_{2,1}^{J}(\theta)+(-1)^{J} d_{-2,1}^{J}(\theta)\right] \\
\mathcal{E} & =\sum_{\substack{J=2 \\
\text { even }}}^{\infty}(2 J+1) d_{2,0}^{J}(\theta) A_{\uparrow \downarrow}^{J}+\frac{4 M^{2}}{\bar{s}-4 M^{2}}(\mathcal{H}+\mathcal{E})
\end{aligned}
$$

for large virtualities we can employ (conformal) OPE
(Taylor expansion with respect to $\left.\vartheta=\left(q_{1}^{2}-q_{2}^{2}\right) / Q^{2}=\eta / \xi\right)$

$$
\mathcal{F}^{(t)} \simeq \sum_{j=0}^{\infty}\left[1 \mp(-1)^{j}\right] \vartheta^{j+1} C_{j}\left(\vartheta, Q^{2} / \mu^{2}, \alpha_{s}(\mu)\right) F_{j}^{(t)}\left(\cos \theta, s, \mu^{2}\right)
$$

angular momentum J partial wave expansion of GPD moments:

$$
F_{j}^{(t)}\left(\cos \theta, s, \mu^{2}\right)=\sum_{\substack{J=J_{\min } \\ \text { even odd }}}^{j+1}(2 J+1) F_{j}^{J}\left(s, \mu^{2}\right) \omega_{\mathcal{F}}(\theta) d_{\mathcal{F}}^{J}(\theta)
$$

crossing $F_{j}(\eta)=\eta^{j+1} F_{j}^{(t)}(\theta), \cos \theta \sim-1 / \eta$, yields

$$
F_{j}(\eta, t) \sim \sum_{\alpha} \frac{F_{j}^{j+1, \alpha}(t)}{j+1-\alpha(t)}+\sum_{\alpha} \gamma_{j+1-\alpha(t)}(t) \eta^{j+1-\alpha(t)}
$$

$$
\alpha(t)=\alpha(0)+\alpha^{\prime} t
$$

leading SO(3) partial wave remaining ones
I matching scale should be rather low $\quad Q^{2} \sim 1 \mathrm{GeV}^{2}, \quad \eta \lesssim 0.05$
! the forward limit is `nontrivial'

$$
F_{j}(\eta \rightarrow 0, t) \sim \frac{\beta(t)}{j+1-\alpha(t)}+\gamma(t) \eta^{j+1-\alpha(t)}
$$

Ansatz for partonic partial wave amplitudes

* at short distance a quark/anti-quark state is produced, labeled by conformal spin j+2 (helicity conservation)
they form an intermediate mesonic state with total angular momentum J strength of coupling is $f_{j}^{J}, J \leq j+1$
* mesons propagate with $\frac{1}{m^{2}(J)-t} \propto \frac{1}{J-\alpha(t)}$
* decaying into a nucleon anti-nucleon pair with given spin S and angular momentum L, described by an impact form factor

$$
F_{j}^{J}\left(\Delta^{2}\right)=\frac{f_{j}^{J}}{J-\alpha\left(\Delta^{2}\right)} \frac{\sum^{1}}{\left(1-\frac{\Delta^{2}}{M^{2}(J)}\right)^{p}}
$$

$!$ GPD E is zero if chiral symmetry holds (partial waves are Gegenbauer polynomials with index $3 / 2$)
D-term arises from the $\mathrm{SO}(3)$ partial wave $J=j+1(j \rightarrow-1)$

Constraints for partonic partial wave amplitudes

$\%$ moments of parton distributions $\quad F_{j}^{J=j+1}\left(\Delta^{2}=0\right)=\frac{f_{j}^{j+1}}{j+1-\alpha\left(\Delta^{2}=0\right)}$
\% partonic form factors

$$
F_{j=0}^{J=1}\left(\Delta^{2}\right)=\frac{f_{0}^{1}}{1-\alpha\left(\Delta^{2}\right)} \frac{1}{\left(1-\frac{\Delta^{2}}{M^{2}(0)}\right)^{p}}
$$

* angular momentum sum rule

$$
(H+E)_{j=1}^{J=2}\left(\Delta^{2}\right)=\frac{(h+e)_{1}^{2}}{2-\alpha\left(\Delta^{2}\right)} \frac{1}{\left(1-\frac{\Delta^{2}}{M^{2}(1)}\right)^{p}}
$$

\% positivity constraints?

$$
\sum_{\substack{j=0 \\ \text { even }}}^{\infty} C_{j+J}\left(\vartheta, Q^{2} / \mu^{2}, \alpha_{s}\left(\mu^{2}\right)\right) F_{j+J}^{J}\left(\Delta^{2}, \mu^{2}\right) \geq 0
$$

* lattice results for higher moments suggest a J dependent cut off-mass $M^{2}(J)$

Perturbative and higher twist corrections

> perturbative next--to--leading order corrections [conformal approach D.M. (94)] \checkmark hard scattering part for photon/meson electroproduction [A. Belitsky, D.M. $(00,01)$ \checkmark flavor singlet part for meson electroproduction [D. Ivanov, L. Szymanowski (04)]
\checkmark for all then flavor singlet twist--two anomalous dimensions [A. Belitsky, D.M. (98)] \checkmark and flavor singlet twist--two evolution kernels [A. Belitsky, D.M., A. Freund $(99,00)]$
> evaluation of higher twist contributions
\checkmark completing the twist-three sector [A. Belitsky, D.M. (00)]
target mass corrections (twist-4) to photon electroproduction [A.Belitsky,D.M.(01)
\& WW-approximation to helicity flip DVCS contribution [N. Kivel, L. Mankiewicz (01)]
o higher twist corrections are not well understood
> perturbative next--to--next--to--leading order corrections to DVCS [D.M. (05); K.Kumerićki, K.Passek-Kumerićki, D.M., A. Schäfer (06/07)]

Dispersion relation \& conformal OPE

i. use analyticity with respect to $\nu=\frac{s-u}{4 M}=\frac{Q^{2}}{2 M} \xi^{-1}$
$\mathcal{F}\left(\xi, \vartheta, \Delta^{2}, Q^{2}\right)=\frac{1}{\pi} \int_{0}^{1} d \xi^{\prime}\left(\frac{1}{\xi-\xi^{\prime}} \mp \frac{1}{\xi+\xi^{\prime}}\right) \Im m \mathcal{F}\left(\xi^{\prime}-i 0, \vartheta, \Delta^{2}, Q^{2}\right)+\mathcal{C}\left(\vartheta, \Delta^{2}, Q^{2}\right)$
photon asymmetry $\vartheta=\eta / \xi$ is 0 for DIS 1 for DVCS
ii. Taylor expansion in the unphysical region, i.e., $\omega=1 / \xi$ in the vicinity $\omega=0$

$$
\mathcal{F}\left(\xi, \vartheta, \Delta^{2}, Q^{2}\right)=\sum_{j=0}^{\infty}\left[1 \mp(-1)^{j}\right] \omega^{j+1} \mathcal{F}_{j}\left(\vartheta, \Delta^{2}, Q^{2}\right)+\mathcal{C}\left(\vartheta, \Delta^{2}, Q^{2}\right),
$$

$$
\mathcal{F}_{j}(\cdots)=\frac{1 \mp(-1)^{j}}{2 \pi} \int_{0}^{1} d \xi \xi^{j} \Im m \mathcal{F}(\xi-i 0, \cdots)
$$

iii. (conformal) operator product expansion gives the Taylor coefficients

$$
\mathcal{F}_{j} \simeq \sum_{\substack{n=0 \\ \text { even }}}^{\infty} C_{j+n}\left(\vartheta, Q^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \vartheta^{n} F_{j+n}^{(n)}\left(\Delta^{2}, \mu^{2}\right), \quad F_{j}^{(l)}=\left.\frac{1}{l!} \frac{d^{l}}{d \eta^{l}} F_{j}\left(\eta, \Delta^{2}, \mu^{2}\right)\right|_{\eta=0}
$$

iv. invert Mellin transform yields conformal partial wave expansion:

$$
\left.\mathcal{F}=\frac{1}{2 i} \int_{c-i \infty}^{c+i \infty} d j \xi^{-j-1}\left[i+\underset{\sim}{\{ } \begin{array}{c}
\tan \\
-\cot
\end{array}\right\}\left(\frac{\pi j}{2}\right)\right] C_{j}\left(\mathcal{Q}^{2} / \mu^{2}, \alpha_{s}(\mu)\right) F_{j}\left(\xi, \Delta^{2}, \mu^{2}\right)
$$

signature

Wilson coefficients (hard scattering)
integration path is parallel to the imaginary axis, where singularities (Regge poles and cuts) are on the I.h.s.
$>$ for a scheme that respects conformal symmetry:
$\checkmark C_{j}$ and γ_{j} are known to NNLO (from DIS)
$>$ Conformal symmetry breaking (arising from the trace anomaly) is shifted to the NNLO evolution and remains unknown
standard MS scheme can be also implemented to NLO various representations of that kind are well known

GPD moments contain subtraction constant
smearing method [B. Geyer, A. Belitsky, D.M., L. Niedermeier, A. Schäfer (97/99)] - generating function, resummation of SO(3) partial waves [M. Polyakov, A. Shuvaev (02)] - Mellin-Barnes representation [DM, A. Schäfer (05); also A. Manashov, M. Kirch, A. Schäfer (05)]

Remarks on the subtraction constant

 subtraction constant is predicted by the OPE:$$
\mathcal{C}\left(\vartheta, \Delta^{2}, Q^{2}\right) \simeq 2 \sum_{\substack{n=2 \\ \text { even }}}^{\infty} C_{n-1}\left(\vartheta, Q^{2} / \mu^{2}, \alpha_{s}(\mu)\right) \vartheta^{n} E_{n-1}^{(n)}\left(\Delta^{2}, \mu^{2}\right),
$$

it is expressed by the coefficients of the highest possible power in η appearing in the conformal GPD moments (D-term contribution) predicted to be zero for $\mathcal{H}+\mathcal{E}$ and in forward kinematics $\mathcal{C}\left(\vartheta=0, \Delta^{2}, Q^{2}\right) \simeq 0$

Is the subtraction constant related to the imaginary part?
yes, for the case of oversubtraction $\quad \mathcal{C}(\vartheta, \ldots)=\frac{2}{\pi} \int_{0}^{\infty} d \xi \xi^{-1} \Im m \mathcal{E}(\xi, \vartheta, \ldots)$
likely, in reality $\mathcal{C}(\vartheta, \ldots)=\frac{2}{\pi} \lim _{j \rightarrow-1}\left\{\int_{0}^{\infty} d \xi \xi^{j} \Im m[\mathcal{E}(\xi, \vartheta, \ldots)-\underset{\substack{\mathcal{E}(\xi, \vartheta \\ \text { fixed pole } \\ \text { Brodsky, Close, Gunion (72) }}}{\text { Bro }}\right.$ only a Kronecker- δ singularity in the j plane justifies an independent D-term

NLO \& NNLO corrections - non-singlet

K. Kumerički, D.M., A. Schäfer K. Passek-Kumerički (06/07)

\checkmark NLO corrections are moderate \& factorization scale dependence is strongly reduced \checkmark at NNLO perturbation theory is stabilizing for hard-scattering part and evolution
\checkmark both factorization and renormalization scale dependencies are reduced to 2% and 3%

NLO \& NNLO corrections- singlet sector

 ξ

$>$ NLO corrections strongly depend on the gluon entry
> at NNLO drastically reduction of perturbative corrections to the hard scattering part \& reduction of renormalization scale dependence
$>$ but perturbative predictions for the evolution is unstable no improvement of factorization scale dependence

Ready for a GPD fitting procedure?
 [K. Kumerički, D.M., K. Passek-Kumerički, hep-ph/0703179]

partially YES but it is NOT completed yet:
reasonable well motivated hypotheses of GPD moments must be implemented
some technical, however, straightforward work is left (like a reevaluation of observables)

Lessons from DVCS fits for H1 and ZEUS data

DVCS cross section has been measured in the small $\xi=\mathcal{Q}^{2} /\left(2 W^{2}+\mathcal{Q}^{2}\right)$ region

$$
40 \mathrm{GeV} \lesssim W \lesssim 150 \mathrm{GeV}, \quad 2 \mathrm{GeV}^{2} \lesssim \mathcal{Q}^{2} \lesssim 80 \mathrm{GeV}^{2}, \quad|t| \lesssim 0.8 \mathrm{GeV}^{2}
$$

and it is predicted by

suppressed contributions <<0.05>> relative O (()
LO [Belitsky, DM, Kirchner (01), Guzey, Teckentrup (06)]
data are described within questionable t-slope parameters
NLO [Freund, M. McDermott (02)]
results strongly depend on used parton density parameterization do a simultaneous fit to DIS and DVCS

Ansatz for conformal GPD moments

$$
\begin{aligned}
& H_{j}^{\mathrm{G}}\left(\eta, \Delta^{2}, \mu_{0}^{2}\right)=N_{\mathrm{G}} \frac{B\left(1-\alpha_{\mathrm{G}}(0)+j, 6\right)}{B\left(2-\alpha_{\mathrm{G}}(0), 6\right)} \frac{1}{1-\frac{\Delta^{2}}{\left(m_{j}^{G}\right)^{2}}} \frac{1}{\left(1-\frac{\Delta^{2}}{\left(M_{j}^{\mathrm{G}}\right)^{2}}\right)^{2}}+\mathcal{O}\left(\eta^{2}\right) \\
& H_{j}^{\Sigma}\left(\eta, \Delta^{2}, \mu_{0}^{2}\right)=N_{\Sigma} \frac{B\left(1-\alpha_{\Sigma}(0)+j, 8\right)}{B\left(2-\alpha_{\Sigma}(0), 8\right)} \frac{1}{1-\frac{\Delta^{2}}{\left(m_{j}^{\Sigma}\right)^{2}}} \frac{1}{\left(1-\frac{\Delta^{2}}{\left(M_{j}^{\Sigma}\right)^{2}}\right)^{3}}+\mathcal{O}\left(\eta^{2}\right)
\end{aligned}
$$

some simplifications in the ansatz:

* neglecting η dependence
* only designed for small x (no momentum sum rule)
* flavor non-singlet contribution is neglected (5% effect)
* fixed numbers of quarks ($n_{f}=4$)
parameters @ fixed input scale $Q^{2}=4 \mathrm{GeV}^{2}$
* 2x normalization $N, 2 x$ intercept $\alpha, 2 x$ cut-off mass M_{0}
little sensitivity of slope $\alpha^{\prime}\left(=0.15 / \mathrm{GeV}^{2}\right)$
* little sensitivity on j-dependence in M_{j}

order (scheme)	$\alpha_{s}\left(M_{Z}\right)$	N_{Σ}	$\alpha_{\Sigma}(0)$	M_{Σ}^{2}	N_{G}	$\alpha_{\mathrm{G}}(0)$	M_{G}^{2}	χ^{2}	$\chi^{2} /$ d.o.f.	$\chi_{\Delta^{2}}^{2}$
LO	0.130	0.157	1.17	0.228	0.527	1.25	0.263	100	0.85	38.5
NLO $(\overline{\mathrm{MS}})$	0.116	0.172	1.14	1.93	0.472	1.08	4.45	109	0.92	4.2
NLO $(\overline{\mathrm{CS}})$	0.116	0.167	1.14	1.34	0.535	1.09	1.59	95	0.80	2.2
NNLO $(\overline{\mathrm{CS}})$	0.114	0.167	1.14	1.17	0.571	1.07	1.39	91	0.77	2.2

simultaneous

 NNLO fit to DVCS and DIS
LO \& MS NLO fits

 are not optimal
missing parameter
CS beyond LO yields good fits

neglecting η is justified ? just luck

Can one do better?

Yes, introduce a distribution of $\mathrm{SO}(3)$ partial waves in conformal GPD moments
toy example: take two partial waves
η dependence can be safely neglected
$F_{j}\left(\eta, \Delta^{2}\right)=\frac{f_{j}^{j+1}}{\left(1-\frac{\Delta^{2}}{M^{2}(j+1)}\right)^{p}}\left(\frac{1}{j+1-\alpha\left(\Delta^{2}\right)} P_{j+1}^{\mathcal{F}}(\eta)+\frac{s \eta^{2}}{j-1 \|-\alpha\left(\Delta^{2}\right)} P_{j-1}^{\mathcal{F}}(\eta)\right)$
effective relative strength of remaining partial waves
now we get a very good LO fit:
\cdots fixed $s_{G}=0, \quad M=M_{G}=M_{\Sigma}$

* $X^{2} /$ d.o.f. $=0.52, s_{\Sigma}=-0.75$,
* other parameters are consistent with previous fits

$$
N_{\Sigma}=0.14, \alpha_{\Sigma}=1.20, N_{G}=0.8, \alpha_{G}=1.16
$$

* $X^{2}{ }_{t}=2.61, M^{2}=0.86$
`negative’ skewness dependence is required at LO

Partonic picture: longitudinal degrees

our fits are compatible with Alekhin's NLO PDF parameterization:
\checkmark central value of our quark densities lies in Alekhin's error band
\checkmark gluons are less constrained by DIS fit (error bands would overlap)

Partonic picture: transversal degrees

transversal distribution of partons in the infinite momentum frame:

$$
H(x, \vec{b})=\int \frac{d^{2} \vec{\Delta}}{(2 \pi)^{2}} e^{-i \vec{b} \cdot \vec{\Delta}} H\left(x, \eta=0, \Delta^{2}=-\vec{\Delta}^{2}\right)
$$

the average distance of partons is: $\left\langle\vec{b}^{2}\right\rangle\left(x, \mathcal{Q}^{2}\right)=\frac{\int d \vec{b} \vec{b}^{2} H\left(x, \vec{b}, \mathcal{Q}^{2}\right)}{\int d \vec{b} H\left(x, \vec{b}, \mathcal{Q}^{2}\right)}=4 B\left(x, \mathcal{Q}^{2}\right)$

Conclusions

\checkmark Mellin-Barnes representation offers a new view on GPDs e.g., conformal GPD moments are simply related to:
i. Lattice simulations (non-negative integer ρ)
ii. Regge phenomenology (complex valued j, behavior at small η)
iii. s-channel physics, i.e., behavior at large j
\checkmark observables are sensitive to SO(3) partial waves
(2) their decomposition in terms of conformal partial waves is not accessible (except in double DVCS, or photon fusion of two virtual photons)
\checkmark numeric is fast and reliable [even at NLO for MS scheme]
\checkmark perturbative expansion in DVCS works - except for evolution at small x
\checkmark fitting procedure (better than comparing model A, B, ..., with data) can be set up
\checkmark a `global’ analysis of GPD related data requires NLO

To do list:

* improving twist expansion for DVCS observables
* How conjectured duality can be implemented in GPD moments?
extend formalism to hard meson electroproduction (straightforward @ NLO)

