DVCS at HERMES

Frank Ellinghaus
University of Colorado
Exclusive Reactions, JLab, USA, May 2007

- **The GPD H via:**
 - Beam-Spin Asymmetry (BSA)
 - Beam-Charge Asymmetry (BCA)

- **The GPD E via transverse Target-Spin Asymmetry (TTSA)**

- DVCS on Nuclei
Parameterization of the Nucleon Structure

- **Form Factors** \rightarrow **Transverse position** \leftarrow **Elastic scattering**

- **PDFs** \rightarrow **Longitudinal momentum distribution** \leftarrow **DIS**

- **GPDs** \rightarrow **Access to transverse position and longitudinal momentum distr. at the same time, 3-D picture** \leftarrow **Exclusive reactions**

Frank Ellinghaus, JLab, May 2007
Generalized Parton Distributions (GPDs)

Simplest/cleanest hard exclusive process:
Deeply-virtual electroproduction of real photons: \(e p \rightarrow e' p' \gamma \)
Deeply-virtual Compton Scattering (DVCS):

- Longitudinal momentum fractions:
 \(x \in [-1, 1] \) (not accessible)
 \(\xi \approx x_B/(2 - x_B) \)
- \(t = (q - q')^2 \) (\(\gamma^* \rightarrow \gamma \) Momentum transfer)
- \(Q^2 = -q^2 \)

⇒ Measurements as function of \(x_B, t, Q^2 \)

DVCS: Access to all four GPDs \(H, \tilde{H}, E, \tilde{E} \)
Mesons: Access to \(H, E \) (VM) and \(\tilde{H}, \tilde{E} \) (PS)
Overview GPDs

PDFs: GPDs in the limit $t \to 0$

\[
H^q(x, 0, 0) = q(x), \\
\tilde{H}^q(x, 0, 0) = \Delta q(x), \ldots
\]

FFs: First moments of GPDs

\[
\int_{-1}^{1} dx H(x, \xi, t) = F_1(t), \ldots
\]

Only known (quantitative) access to (total)

Orbital angular momentum:

\[
J_{q,g} = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} dx \ x \ [H^{q,g}(x, \xi, t) + E^{q,g}(x, \xi, t)]
\]

(X. Ji, 97)

Original (HERMES) Motivation:

Nucleon (Long.) Spin Structure:

\[
1/2 = \frac{1}{2} (\Delta u + \Delta d + \Delta s) + \frac{?}{L_q} + \frac{?}{J_g}
\]

\[\sim 30\% \]

Frank Ellinghaus, JLab, May 2007
How To Access GPDs via DVCS?

DVCS Final state \(e + p \rightarrow e' + p' + \gamma \) is indistinguishable from the Bethe-Heitler Process (BH) \(\rightarrow \) Amplitudes add coherently

\[d\sigma \propto |\tau_{DVCS} + \tau_{BH}|^2 = |\tau_{DVCS}|^2 + |\tau_{BH}|^2 + (\tau_{DVCS}^* \tau_{BH} + \tau_{BH}^* \tau_{DVCS}) \]

Fixed-Target, Collider

Collider

Frank Ellinghaus, JLab, May 2007
DVCS MEASUREMENTS

\[
d\sigma \propto |\tau_{BH}|^2 + \underbrace{(\tau^*_{DVCS} \tau_{BH} + \tau^*_{BH} \tau_{DVCS})}_{I} + |\tau_{DVCS}|^2
\]

|\tau_{BH}|^2 calculable in QED with the knowledge of the form factors

\[
I \propto \pm \left(c^I_0 + \sum_{n=1}^{3} c^I_n \cos(n\phi) + \lambda \sum_{n=1}^{3} s^I_n \sin(n\phi) \right)
\]

DVCS cross section (H1, Zeus): Measurement integrated over \(\phi \) → \(I = 0 \) (at Twist–2), subtract |\tau_{BH}|^2

Azimuthal asymmetries (HERMES, JLab): DVCS amplitudes directly accessible via \(I \Rightarrow \text{Magnitude} + \text{Phase}!!! \)

(GPDs enter in linear combinations)
Azimuthal Asymmetries

\[I \propto \pm (c_0^I + \sum_n [c_n^I \cos(n\phi) + \lambda s_n^I \sin(n\phi)]) \]

Beam–Spin Asymmetry (BSA) and Beam–Charge Asymmetry (BCA)

ON UNPOLARIZED TARGET:

BSA:
\[d\sigma(e^+p) - d\sigma(e^+\bar{p}) \sim s_{1,\text{unp}}^{I} \sin(\phi) \sim \sin(\phi) \times \text{Im} \, M_{\text{unp}}^{1,1} \]

BCA:
\[d\sigma(e^+p) - d\sigma(e^-p) \sim c_{1,\text{unp}}^{I} \cos(\phi) \sim \cos(\phi) \times \text{Re} \, M_{\text{unp}}^{1,1} \]

(Higher Twist/Order \(\rightarrow\) \(\cos 2\phi, \cos 3\phi, \sin 2\phi\))

Longitudinal Target–Spin Asymmetry (LTSA)

LTSA:
\[d\sigma(e^+\bar{p}) - d\sigma(e^+\bar{p}) \sim s_{1,\text{LP}}^{I} \sin(\phi) \sim \sin(\phi) \times \text{Im} \, M_{\text{LP}}^{1,1} \]

(Higher Twist/Order \(\rightarrow\) \(\sin 2\phi, \sin 3\phi\))
From Amplitudes to GPDs

\[M^{1,1}_{unp} = F_1(t) H_1(\xi, t) + \frac{x_B}{2-x_B} (F_1(t) + F_2(t)) \tilde{H}_1(\xi, t) - \frac{t}{4M^2} F_2(t) E_1(\xi, t) \]

\[\langle x_B \rangle, \langle -t \rangle \approx 0.1 \Rightarrow \text{Compton Form-Factor} \ H_1 \]

\[\text{Im} \ H_1 \sim -\pi \sum_q e_q^2 (H^q(\xi, \xi, t) - H^q(-\xi, \xi, t)) \]

\[\text{Re} \ H_1 \sim \sum_q e_q^2 \left[P \int_{-1}^{1} H^q(x, \xi, t) \left(\frac{1}{x - \xi} + \frac{1}{x + \xi} \right) dx \right] \]

BSA: \text{Im} \ M^{1,1}_{unp} \text{ mainly accesses the GPD } H^q(x, \xi, t) \text{ at } x = \xi \Rightarrow \text{measures } H^q(\xi, \xi, t) \]

BCA: \text{Re} \ M^{1,1}_{unp} \text{ contains full } x\text{-dependence of the GPD } H^q(x, \xi, t),

\text{x is not accessible } \Rightarrow \text{GPD Model } \rightarrow \text{Observables } \leftarrow \text{Measurement}
HERMES Event Selection

HERA Beam: 27.6 GeV, e^+ AND e^-, $\langle P \rangle \approx 35 - 55\%$
POL. + UNPOL. Gas Targets: H/D/Ne/Kr/..

Events with exactly one DIS-positron/DIS-electron and exactly one photon in the calorimeter

Data shown taken before installation of recoil detector ⇒

Frank Ellinghaus, JLab, May 2007
Exclusivity for DVCS via Missing Mass

\[M^2_x \equiv (q + p - p_\gamma)^2 \Rightarrow MC \] for background and cuts (→ resolution)!

- **Elastic BH** \((e p \to e' p' \gamma)\)
- **Associated BH** (mainly \(e p \to e' \Delta^+ \gamma\))
- **Semi-Inclusive** (mainly \(e p \to e' \pi^0 X\))
- **Exclusive** \(\pi^0 (e p \to e' \pi^0)\) NOT SHOWN (SMALL)

Not simulated: DVCS process (DVCS c.s. “unknown”, DVCS \(<\!< BH\)) + Radiative corrections to BH (→ excl. peak overestimated, BG underestimated)

⇒ “Exclusive” bin \((-1.5 < M_x < 1.7 \text{ GeV})\)
⇒ Overall background contribution \(\approx 15\%\)
Beam–Spin Asymmetry (BSA)

\[A_{LU}(\phi) = \frac{1}{<|P_b|>} \frac{\vec{N}(\phi) - \vec{N}(\phi)}{\vec{N}(\phi) + \vec{N}(\phi)} \]

\[e^+ p \rightarrow e^+ \gamma X \quad (M_x < 1.7 \text{ GeV}) \]

HERMES PREL. 2000 (refined)

- **P1** = -0.04 ± 0.02 (stat)
- **P2** = -0.18 ± 0.03 (stat)
- **P3** = 0.00 ± 0.03 (stat)

\[\langle -t \rangle = 0.18 \text{ GeV}^2, \langle x_B \rangle = 0.12, \langle Q^2 \rangle = 2.5 \text{ GeV}^2 \]

A\text{LU} in exclusive bin: **Expected sin(\phi) dependence \Rightarrow Im M^{1,1}_{unp}**

\[\sin(\phi) - \text{Moment in non–exclusive region: small and slightly positive (\(\rightarrow \pi^0 \))} \]

(Results from 1996/97 \(\rightarrow \) PRL 87, 182001 (2001))

Frank Ellinghaus, JLab, May 2007
Kinematic dependences of Beam–Spin Asymmetry (BSA)

Kinematic dependence of combined 96/97 (published, PRL) and 2000 (preliminary, hep-ex/0212019) data, reanalyzed with common cuts

\[A_{LU}(\phi) = \frac{1}{\langle |P_b| \rangle} \frac{\overline{N}(\phi) - \overline{N}(\phi)}{\overline{N}(\phi) + \overline{N}(\phi)} \]

\[A_{LU}^{\sin \phi} \leq 0.2 \]

\[A_{LU}^{\sin 2\phi} \text{ consistent with zero} \]

\[\Rightarrow \text{Weak kinematic dependence (kinematics correlated!)} \]

Compare to calculations at average \(x, Q^2, t \) per bin →

Frank Ellinghaus, JLab, May 2007
Kinematic dependences of Beam–Spin Asymmetry (BSA)

- **Model calculations using VGG code** give too large asymmetries compared to **Preliminary HERMES (blue)** and **published CLAS (green, PRL)** data.
- **Similar magnitude** seen in other model calculations.

Flat kinematic dependence well described by models.

Frank Ellinghaus, JLab, May 2007
The models (Guzey/Teckentrup, PRD 74, 2006) are in agreement with “all” other DVCS data so far:
→ Cross section at H1/ZEUS
→ BCA at HERMES (→ later…)
→ Published average BSA values from HERMES+CLAS (PRL, 2001)

The size and kinematic dependence of the asymmetry is reproduced (except maybe at small Q^2).

More data with improved systematics to come, but BSA less sensitive to models when compared to BCA.
BCA: Beam–Charge Asymmetry \((hep-ex/0605108, PRD 2007)\)

\[A_C(\phi) = \frac{N^+(\phi)-N^-(\phi)}{N^+(\phi)+N^-(\phi)} \propto I \propto \pm (c_0^I + \sum_{n=1}^{3} c_n^I \cos(n\phi) + \lambda \sum_{n=1}^{2} s_n^I \sin(n\phi)) \]

\[\Rightarrow \text{Calculate "symmetrized" BCA } (\phi \rightarrow |\phi|) \text{ to get rid of all } \sin(\phi) - \text{dependences due to polarized beam.} \]

\[A_C \text{ in exclusive bin: Expected } \cos(\phi) \text{ dependence } \Rightarrow \Re M_{\text{unp}}^{1,1} \]

\[\cos(\phi) \text{-Moments zero at higher missing mass} \]

Frank Ellinghaus, JLab, May 2007
Beam-Charge Asymmetry versus $-t$ (PRD 2007)

VGG
⇒ Regge+D-Term disfavored

TINY $e^- p$ sample (only ≈ 700 events) ⇒ Now ≈ 20 times more on disk!
⇒ t–dependence of BCA has high sensitivity to GPD models!
Utilize both charges for BSA: A closer look . . .

\[d\sigma |\tau_{DVCS}|^2 \propto |\tau_{BH}|^2 + \left(\tau_{DVCS}^* \tau_{BH} + \tau_{BH}^* \tau_{DVCS} \right) \]

Fourier Expansion (unpolarized p target):

\[|\tau_{BH}|^2 \propto c_0^{BH} + \sum_{n=1}^{2} c_n^{BH} \cos(n\phi) \]

\[|\tau_{DVCS}|^2 \propto c_0^{DVCS} + \sum_{n=1}^{2} c_n^{DVCS} \cos(n\phi) + \lambda s_1^{DVCS} \sin(\phi) \]

\[I \propto \pm \left(c_0^I + \sum_{n=1}^{3} c_n^I \cos(n\phi) + \lambda \sum_{n=1}^{2} s_n^I \sin(n\phi) \right) \]

The approximation:

\[A_{LU}^{e- / e^+} (\phi) = \frac{1}{<|P_b|>} \frac{\hat{N}(\phi) - \overline{\hat{N}}(\phi)}{\hat{N}(\phi) + \overline{\hat{N}}(\phi)} \approx \frac{\pm s_1^I \sin \phi}{|\tau_{BH}|^2 + c_0^{DVCS} + c_1^{DVCS} \cos \phi \pm c_0^I \pm c_1^I \cos \phi} \]

The approximation is too simple . . .
Using both beam charges for the BSA:

\[A_{LU}^{e-} = \frac{1}{|P_b|} \frac{\overrightarrow{N}(\phi) - \overline{N}(\phi)}{\overrightarrow{N}(\phi) + \overline{N}(\phi)} \approx \pm s_1^I \sin \phi + s_1^{DVCS} \sin \phi \]

\[A_{LU}^{e+} = \frac{1}{|P_b|} \frac{\overrightarrow{N}(\phi) - \overline{N}(\phi)}{\overrightarrow{N}(\phi) + \overline{N}(\phi)} \approx \frac{-s_1^I \sin \phi}{|\tau_{BH}|^2 + c_0^{DVCS} + c_1^{DVCS} \cos \phi} \]

\[\sin \phi \text{ amplitude of the “usual” BSA is not only sensitive to the interference term, but gets contributions from the DVCS term} \]

The “usual” BSA is complicated, it depends on the beam-charge and on the size of the BCA

⇒ Disentangle contributions from the interference term and the DVCS term by measuring two new asymmetries:

The “Interference” BSA:

\[A_{LU}^I(\phi) = \frac{1}{|P_b|} \frac{\overrightarrow{N}^+(\phi) + \overrightarrow{N}^-(\phi) - \overrightarrow{N}^+(\phi) - \overrightarrow{N}^-(\phi)}{\overrightarrow{N}^+(\phi) + \overrightarrow{N}^-(\phi) + \overrightarrow{N}^+(\phi) + \overrightarrow{N}^-(\phi)} \approx \frac{-s_1^I \sin \phi}{|\tau_{BH}|^2 + c_0^{DVCS} + c_1^{DVCS} \cos \phi} \]

The “DVCS” BSA:

\[A_{LU}^{DVCS}(\phi) = \frac{1}{|P_b|} \frac{\overrightarrow{N}^+(\phi) - \overrightarrow{N}^-(\phi) - \overrightarrow{N}^+(\phi) + \overrightarrow{N}^-(\phi)}{\overrightarrow{N}^+(\phi) + \overrightarrow{N}^-(\phi) + \overrightarrow{N}^+(\phi) + \overrightarrow{N}^-(\phi)} \approx \frac{s_1^{DVCS} \sin \phi}{|\tau_{BH}|^2 + c_0^{DVCS} + c_1^{DVCS} \cos \phi} \]

⇒ New asymmetries can disentangle (both charges needed) the contributions from interference and DVCS\(^2\) term

Frank Ellinghaus, JLab, May 2007
Recoil Detector and unpol. Targets (2006/2007)
- Ensures exclusivity of events
 - Semi-inclusive background $5\% \Rightarrow \ll 1\%$
 - Associated background $10\% \Rightarrow \approx 1\%$

\Rightarrow Essential at larger $-t$ values

\Rightarrow Talk by R. Perez-Benito

Frank Ellinghaus, JLab, May 2007
What about the GDP E?

Remember:

$$J_q = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} dx \, x \left[H^q(x, \xi, t) + E^q(x, \xi, t) \right]$$

GPD E (on p target) is always kinematically suppressed, except in:

A_{UT}: unpolarized beam, transversely pol. target

$$A_{UT}(\phi, \phi_s) = \frac{1}{|P_T|} \cdot \frac{d\sigma^\uparrow(\phi, \phi_s) - d\sigma^\downarrow(\phi, \phi'_s)}{d\sigma^\uparrow(\phi, \phi_s) + d\sigma^\downarrow(\phi, \phi'_s)}$$

$$\propto \text{Im}[F_2 \mathcal{H} - F_1 \mathcal{E}] \cdot \sin(\phi - \phi_S) \cos \phi + \text{Im}[F_2 \tilde{\mathcal{H}} - F_1 \xi \tilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S) \sin \phi$$

Frank Ellinghaus, JLab, May 2007
DVCS TTSA compared to the Model Calculations!

Data taking with transverse Hydrogen target finished
≈ 10 million on tape, half the data (2002-2004) analyzed

\[A_{UT} \sin(\phi - \phi_s) \cos \phi \]

LARGELY INDEPENDENT on all model parameters but \(J_u \)

(F.E., Nowak, Vinnikov, Ye, EPJ C46 (2006), hep-ph/0506264)

⇒ First model dependent extraction of \(J_u \) possible!

Frank Ellinghaus, JLab, May 2007
First model dependent constraint on total quark angular momentum J_u, J_d.

$e^+ p \rightarrow e^+ \gamma X$ ($M_X<1.7$ GeV)

$A_{UT}^{\sin (\phi-\theta)} \cos \phi = -0.149 \pm 0.058$ (stat) ± 0.033 (syst)

$<-t> = 0.12$ GeV2, $<x> = 0.095$, $<Q^2> = 2.5$ GeV2

GPD Model: LO/Regge/D-term=0

Code: VGG [Vanderhaeghen et al., priv. comm.]
• **On the other hand, the models** (Guzey/Teckentrup, PRD 74, 2006) **suggest a small value** for J_u **under the assumption** that $J_d = 0$.

• **The way to go:** Constrain models for GPD H **by BSA/BCA** (first). Some model parameters might be the same for the GPD E . . .

 ⇒ Compare the remaining models to the TTSA and learn about the GPD E (J_u, J_d)
Investigate the internal structure of Nuclei

DVCS on Neon (hep-ex/0212019) triggered first calculations for DVCS on Nuclei

⇒ Possibility (?) to explore nuclear structure in terms of quarks and gluons, EMC effect, (anti-)shadowing, color transparency, …

Frank Ellinghaus, JLab, May 2007
Contributions from different processes from MC

- **Coherent Bethe-Heitler contribution**
- **Incoherent Bethe-Heitler contribution**
- **Semi-inclusive π^0 resonances**

- **DVCS not simulated**

Task: Find upper (lower) $-t'$ cut for each target in order to compare the BSA for the coherent (incoherent) production at similar average values of $-t'$, x_B, and Q^2

- **Coherent:** $\langle -t' \rangle = 0.018 \text{ GeV}^2$
- **Incoherent:** $\langle -t' \rangle = 0.2 \text{ GeV}^2$
Average Kinematic Values for Coherent Production

<table>
<thead>
<tr>
<th>Target</th>
<th>$\langle -t' \rangle = 0.018$</th>
<th>%Coherent</th>
<th>$\langle Q^2 \rangle$</th>
<th>$\langle x_B \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>$-t' < 0.030$</td>
<td>0</td>
<td>1.68</td>
<td>0.068</td>
</tr>
<tr>
<td>Deuterium</td>
<td>$-t' < 0.030$</td>
<td>56%</td>
<td>1.70</td>
<td>0.066</td>
</tr>
<tr>
<td>Helium-4</td>
<td>$-t' < 0.030$</td>
<td>68%</td>
<td>1.74</td>
<td>0.066</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>$-t' < 0.043$</td>
<td>82%</td>
<td>1.77</td>
<td>0.064</td>
</tr>
<tr>
<td>Neon</td>
<td>$-t' < 0.050$</td>
<td>82%</td>
<td>1.73</td>
<td>0.064</td>
</tr>
<tr>
<td>Krypton</td>
<td>$-t' < 0.081$</td>
<td>82%</td>
<td>1.63</td>
<td>0.060</td>
</tr>
<tr>
<td>Xenon</td>
<td>$-t' < 0.085$</td>
<td>82%</td>
<td>1.60</td>
<td>0.059</td>
</tr>
</tbody>
</table>

- $\langle Q^2 \rangle$ and $\langle x_B \rangle$ very similar.

- Fraction of coherent production is $\simeq 82\%$ for all but light targets.

Frank Ellinghaus, JLab, May 2007
A-DEPENDENCE OF THE BSA

- $A_{LU}^{\sin 2\phi}$ is consistent with zero for all targets

Frank Ellinghaus, JLab, May 2007
RATIO A_{LU}^A / A_{LU}^P

\begin{align*}
\text{HERMES PRELIMINARY} \\
\text{Coherent enriched} \\
\text{Fit to a constant : } 1.75 \pm 0.39 \\
\langle -t' \rangle = 0.018 \text{ GeV}^2
\end{align*}

\begin{align*}
\text{Incoherent enriched} \\
\langle -t' \rangle = 0.2 \text{ GeV}^2
\end{align*}

- **COHERENT ENRICHED**: MEAN RATIO DEVIATES FROM UNITY BY 2σ.
 - CALCULATION OF $R=1-1.1$ FOR 4He (Liuti, Taneja, Phys.Rev.C 2005) CONSISTENT WITH MEASUREMENT (LARGE STAT. ERROR, CALCULATIONS FOR HEAVIER TARGETS UNDERWAY)

- **INCOHERENT ENRICHED**: CONSISTENT WITH UNITY AS NAIVELY EXPECTED
Ratio \(A_{LU}^A / A_{LU}^p \)

Consistent with two predictions by Guzev/Siddikov, one disfavored (J.Phys.G, 2006)

Consistent with predictions by Guzev/Strikman (Phys.Rev.C, 2003)

⇒ **Promising, more data needed** ...
HERA/HERMES: End of data taking 7/2/2007:
Goal: “map out” GPD H^u via DVCS Beam-Spin and Beam-Charge Asymmetries

Contributions form the Interference term and the DVCS2 term can be disentangled by new asymmetries involving both beam charges

First model dependent constraint on the total angular momentum of u-quarks (J_u) and d-quarks (J_d) in the nucleon.

DVCS on Nuclei looks promising

Final remark: Orbital angular momentum sum rule needs $t \rightarrow 0$
Hermes measurements on GPD E at “small” t will not be precise
JLab@12 will yield precision measurements at “large” $t \Rightarrow$ EIC

Frank Ellinghaus, JLab, May 2007
The GPD \tilde{H}, Long. Target–Spin Asymmetry (LTSA)

$$A_{UL}(\phi) = \frac{1}{<|P_T|>} \frac{\bar{N}(\phi) - \tilde{N}(\phi)}{\bar{N}(\phi) + \tilde{N}(\phi)} \propto \sin \phi \times Im\tilde{H}_1$$

\[A = s_0 + s_1 \sin \phi + s_2 \sin 2\phi \]

\[\chi^2/\text{ndf}: 8.5/7 \]
\[s_0: -0.009 \pm 0.024 \text{ (stat.)} \]
\[s_1: -0.071 \pm 0.034 \text{ (stat.)} \]
\[s_2: -0.113 \pm 0.034 \text{ (stat.)} \]

\[<t> = 0.12 \text{ GeV}^2, <x_B> = 0.10, <Q^2> = 2.5 \text{ GeV}^2 \]

$A_{UL}(\vec{p})$ in exclusive bin:
Expected $\sin(\phi)$ dep. \Rightarrow GPD \tilde{H}, Unexpected $\sin(2\phi)$ dependence

$A_{UL}(\vec{d})$ in exclusive bin:
\Rightarrow Consistent with zero

Frank Ellingshaus, JLab, May 2007
The GPD \tilde{H}, Long. Target–Spin Asymmetry (LTSA)

- **No effect seen from 40% coherent contribution in first bin**

- **Difference at higher $-t$**
 \Rightarrow **Different asymmetry on the neutron when comp. to proton**

- $A_{UL}^{\sin 2\phi} \Rightarrow$ Difference due to missing QGq twist-3 in the models?

- $A_{UL}^{\sin 2\phi} \Rightarrow$ Difference due to large $\sin 2\phi$ (while $\sin \phi$ is small) in π^0 background (CLAS, hep-ex/0605012)?

Frank Ellinghaus, JLab, May 2007