A Measurement of G_Eⁿ at High Momentum Transfer in Hall A

> Robert J. Feuerbach The College of William and Mary

For the E02-013 Collaboration and Hall A Collaboration

Elastic EM Form Factors

For an extended spin-1/2 particle, the general vertex term is:

Elastic EM Form Factors

For an extended spin-1/2 particle, the general vertex term is:

Double Polarization Measurement

$$A_{phys} = -\left(\frac{G_E}{G_M}\right) \frac{2\sqrt{\tau(\tau+1)}\tan(\theta_e/2)\sin\theta^*\cos\phi^*}{(G_E/G_M)^2 + \tau(1+2(1+\tau)\tan(\theta_e/2))} \\ -\frac{2\tau\sqrt{1+\tau+(1+\tau)^2}\tan(\theta_e/2)}{(G_E/G_M)^2 + \tau(1+2(1+\tau)\tan(\theta_e/2))}$$

Double Polarization Measurement

$$A_{phys} = -\left(\frac{G_E}{G_M}\right) \frac{2\sqrt{\tau(\tau+1)}\tan(\theta_e/2)\sin\theta^*\cos\phi^*}{(G_E/G_M)^2 + \tau(1+2(1+\tau)\tan(\theta_e/2))} \\ -\frac{2\tau\sqrt{1+\tau+(1+\tau)^2}\tan(\theta_e/2)}{(G_E/G_M)^2 + \tau(1+2(1+\tau)\tan(\theta_e/2))}$$

Double Polarization Measurement

$$A_{phys} = -\left(\frac{G_E}{G_M}\right) \frac{2\sqrt{\tau(\tau+1)}\tan(\theta_e/2)\sin\theta^*\cos\phi^*}{(G_E/G_M)^2 + \tau(1+2(1+\tau)\tan(\theta_e/2))} \\ -\frac{2\tau\sqrt{1+\tau+(1+\tau)^2}\tan(\theta_e/2)}{(G_E/G_M)^2 + \tau(1+2(1+\tau)\tan(\theta_e/2))}$$

Elastic EM Form factors: the Neutron

Data analysis: BigHand and BigBite

- Progress of I.7 GeV² dataset shown
- σ_{BH} ~ 400ps timing resolution achieved
- $\sigma_P/p \sim 0.8\%$ for BigBite

QE Event Selection

 Use "W" and missing 3-momentum to select QE events; (here W assumes scattering from stationary nucleon)

For protons from ³He(e,e'p):

QE Event selection: Neutrons

Quasi-elastic defined as: 0.8<W<1.15 GeV |P_{par}-q|<250 MeV/c P_{perp}<150 MeV/c

QE Event selection: Neutrons

A significant fraction of "neutron" background not from accidental coincidences, but are protons.

Observed Asymmetry at 1.7 GeV²

polarization factors

Contributions to G_E^n at 1.7 GeV²

		Effective Uncertainty
Quantity	Value	Relative to G_E^n
Raw Asymmetry	0.0439	5.5~%
Instr. Asymmetry	-0.006	0.1~%
Accid. Background	0.002	1.5~%
Beam Polarization P_e	0.84	3~%
Target Polarization P_{He}	0.49	4~%
Neutron Polarization P_n	$0.86 \cdot P_e$	2~%
Dilution factor from N_2	0.95	3~%
Dilution due to $p \to n$	in process	
Correction for $A_{ }$		in process
FSI/nuclear correction factor	0.85 to 1	in process
G_M^n	-0.170	1 %

Impact

Summary and Outlook

- We have collected data for the first high-precision measurement of G_E^n up to Q2=3.5 GeV².
- Analysis of I.7 GeV² set is nearing completion, and 3.5 GeV² is underway.
- The same experiment could be done at 4.5 GeV², and (with "super-BigBite) up to 7.5 GeV².
- The precision measurement at high Q^2 will determine F_1 and F_2 , and the related GPD's.