A Measurement of G_{E^n} at High Momentum Transfer in Hall A

Robert J. Feuerbach
The College of William and Mary

For the E02-013 Collaboration and
Hall A Collaboration
Elastic EM Form Factors

For an extended spin-1/2 particle, the general vertex term is:

\[\Gamma^\mu = F_1(q^2) \gamma^\mu + \frac{\kappa}{2M} F_2(q^2) i \sigma^{\mu\nu} q^\nu \]

Elastic cross-section:

\[
\frac{d\sigma}{d\Omega_{\text{finite}}} = \left(\frac{d\sigma}{d\Omega} \right)_M \left[(F_1^2 + \tau \kappa^2 F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2 \frac{\theta_e}{2} \right]
\]

Or in terms of the Sachs Form factors:

\[
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_M \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2} \right]
\]
Elastic EM Form Factors

For an extended spin-1/2 particle, the general vertex term is:

\[\Gamma^\mu = F_1(q^2)\gamma^\mu + \frac{\kappa}{2M}F_2(q^2)i\sigma^{\mu\nu}q^\nu \]

Elastic cross-section:

\[\frac{d\sigma}{d\Omega}_{\text{finite}} = \left(\frac{d\sigma}{d\Omega} \right)_M \left[(F_1^2 + \tau\kappa^2F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2 \frac{\theta_e}{2} \right] \]

Or in terms of the Sachs Form factors:

\[\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega} \right)_M \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2} \right] \]

Dominate at large \(Q^2 \)
Double Polarization Measurement

\[
A_N = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}
\]

\[
A_{phys} = - \left(\frac{G_E}{G_M} \right) \frac{2\sqrt{\tau(\tau + 1)} \tan(\theta_e/2) \sin \theta^* \cos \phi^*}{(G_E/G_M)^2 + \tau(1 + 2(1 + \tau) \tan(\theta_e/2))} \\
- \frac{2\tau \sqrt{1 + \tau + (1 + \tau)^2 \tan(\theta_e/2) \tan(\theta_e/2) \cos \theta^*}}{(G_E/G_M)^2 + \tau(1 + 2(1 + \tau) \tan(\theta_e/2))}
\]
Double Polarization Measurement

\[A_N = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \]

\[A_{phys} = -\left(\frac{G_E}{G_M} \right) \frac{2 \sqrt{\tau(\tau + 1) \tan(\theta_e/2)} \sin\theta^* \cos\phi^*}{(G_E/G_M)^2 + \tau(1 + 2(1 + \tau) \tan(\theta_e/2))} \]

\[-2\tau \sqrt{1 + \tau + (1 + \tau)^2 \tan(\theta_e/2) \tan(\theta_e/2) \cos\theta^*} \]

\[\frac{1}{(G_E/G_M)^2 + \tau(1 + 2(1 + \tau) \tan(\theta_e/2))} \]
Double Polarization Measurement

\[
A_N = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}
\]

\[
A_{phys} = - \left(\frac{G_E}{G_M} \right) \frac{2 \sqrt{\tau (\tau + 1) \tan (\theta_e/2) \sin \theta^* \cos \phi^*}}{(G_E/G_M)^2 + \tau (1 + 2(1 + \tau) \tan (\theta_e/2))}
\]

\[
2\tau \sqrt{1 + \tau + (1 + \tau)^2 \tan (\theta_e/2) \tan (\theta_e/2) \cos \theta^*}
\]

\[
\left(\frac{G_E}{G_M} \right)^2 + \tau (1 + 2(1 + \tau) \tan (\theta_e/2))
\]
Elastic EM Form factors: the Neutron

- G_M^n behavior well matched by the dipole form up to $Q^2 \sim 4 \text{GeV}^2$
- G_E^n more sensitive than other FF to details of the pion-cloud at low Q^2
- G_E^n is not precisely measured above 1.5GeV^2
- Permits disentanglement of F_2

\[
F_1^n(t) = \frac{2}{3} F_1^u(t) - \frac{2}{3} F_1^d(t)
\]
\[
F_2^n(t) = \frac{2}{3} F_2^u(t) - \frac{2}{3} F_2^d(t)
\]
\[
F_1^q(t) = \int_{-1}^{+1} dx \ e_q H^q(x, \xi, t)
\]
\[
F_2^q(t) = \int_{-1}^{+1} dx \ e_q E^q(x, \xi, t)
\]
Exclusive QE scattering: $^{3}\text{He}(e,e'n)$

E02-013: Cates, Liyanage, Wojtsekhowski

$Q^2 = 1.3, 1.7, 2.5, 3.5 \text{ GeV}^2$
Exclusive QE scattering: $^3\text{He}(\bar{e},e'n)$

E02-013: Cates, Liyanage, Wojtsekhowski

$Q^2 = 1.3, 1.7, 2.5, 3.5 \text{ GeV}^2$

Neutron Arm (Big HANG)

Compton Polarimeter

Moller Polarimeter

^3He target

$\sim 9 \text{ m}$

$\sim 2.5 \text{ m}$

BB Dipole

MWDC's

Pre-shower Timing Plane Shower

2 veto planes

7 Iron/scintillator sandwich planes

e e'
Exclusive QE scattering: 3He($\vec{e},\vec{e}'n$)

Q$^2 = 1.3, 1.7, 2.5, 3.5$ GeV2

Beam polarization 84%

Target polarization ~ 50

7 Iron/scintillator sandwich planes

E02-013: Cates, Liyanage, Wojtsekhowski

~9 m

~2.5 m
Data analysis: BigHand and BigBite

- Progress of 1.7 GeV² dataset shown
- $\sigma_{BH} \sim 400$ ps timing resolution achieved
- $\sigma_{P/p} \sim 0.8\%$ for BigBite
QE Event Selection

- Use “W” and missing 3-momentum to select QE events; (here W assumes scattering from stationary nucleon)

For protons from $^3\text{He}(e,e'p)$:
QE Event selection: Neutrons

Accidental Background

Quasi-elastic defined as:

- $0.8 < W < 1.15$ GeV
- $|P_{\text{par}} - q| < 250$ MeV/c
- $P_{\text{perp}} < 150$ MeV/c
A significant fraction of “neutron” background not from accidental coincidences, but are protons.
Observed Asymmetry at 1.7 GeV2

Observed asymmetry is 0.0439 ± 0.0024

(5.5% relative statistical uncertainty)

Requires:
- proton→neutron conv.
- finite acceptance corr.
- dilution factors
- polarization factors
Contributions to G_E^n at 1.7 GeV2

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
<th>Effective Uncertainty Relative to G_E^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Asymmetry</td>
<td>0.0439</td>
<td>5.5 %</td>
</tr>
<tr>
<td>Instr. Asymmetry</td>
<td>-0.006</td>
<td>0.1 %</td>
</tr>
<tr>
<td>Accid. Background</td>
<td>0.002</td>
<td>1.5 %</td>
</tr>
<tr>
<td>Beam Polarization P_e</td>
<td>0.84</td>
<td>3 %</td>
</tr>
<tr>
<td>Target Polarization P_{He}</td>
<td>0.49</td>
<td>4 %</td>
</tr>
<tr>
<td>Neutron Polarization P_n</td>
<td>$0.86 \cdot P_e$</td>
<td>2 %</td>
</tr>
<tr>
<td>Dilution factor from N$_2$</td>
<td>0.95</td>
<td>3 %</td>
</tr>
<tr>
<td>Dilution due to $p \rightarrow n$</td>
<td>in process</td>
<td></td>
</tr>
<tr>
<td>Correction for $A_{</td>
<td></td>
<td>}$</td>
</tr>
<tr>
<td>FSI/nuclear correction factor</td>
<td>0.85 to 1</td>
<td>in process</td>
</tr>
<tr>
<td>G_M^n</td>
<td>-0.170</td>
<td>1 %</td>
</tr>
</tbody>
</table>
Impact

\[G_E^n \]

\[Q^2 \ [\text{GeV}^2] \]

\[F_2/F_1 \propto \ln^2(Q^2/\Lambda^2)/Q^2 \]

Herberg
Ostrick
Madey
Seimetz
Warren
Becker
Bermuth
E02-013 (proj)

Miller
Miller (q-only)
Galster fit
Summary and Outlook

• We have collected data for the first high-precision measurement of G_E^n up to $Q^2=3.5$ GeV2.

• Analysis of 1.7 GeV2 set is nearing completion, and 3.5 GeV2 is underway.

• The same experiment could be done at 4.5 GeV2, and (with “super-BigBite) up to 7.5 GeV2.

• The precision measurement at high Q^2 will determine F_1 and F_2, and the related GPD’s.