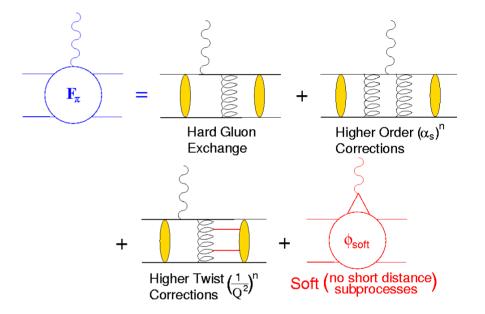

$-\sqrt{\gamma}$ π^0

Meson Form Factors in the Space-Like Region

Dave Gaskell Jefferson Lab Exclusive Reactions at High Momentum Transfer May 23, 2007



Meson Form Factors and QCD

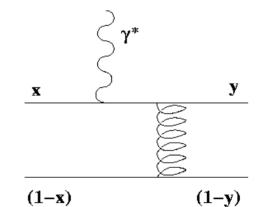
- The simple $q\overline{q}$ valence quark structure of mesons presents the ideal laboratory for testing our understanding of bound quark systems
- Asymptotic form factors can be calculated in pQCD – we know where we need to end up

 Excellent opportunity for studying the transition from effective degrees of freedom to quarks and gluons, i.e., from the soft to hard regime

QCD Hard Scattering Picture

Example: π^+ form factor

At large Q^2 , perturbative QCD (pQCD) can be used


$$F_{\pi}(Q^{2}) = \frac{4\pi C_{F}\alpha_{S}(Q^{2})}{Q^{2}} \left| \sum_{n=0}^{\infty} \alpha_{n} \left(\log\left(\frac{Q^{2}}{\Lambda^{2}}\right) \right)^{-\gamma_{n}} \right|^{2} \left[1 + O\left(\alpha_{S}(Q^{2}), \frac{m}{Q}\right) \right]$$

at asymptotically high Q^2 , only the hardest portion of the wave function remains

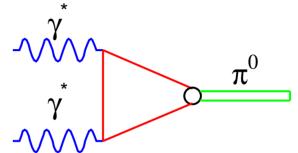
$$\phi_{\pi}(x) \xrightarrow{\mathcal{Q}^2 \to \infty} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

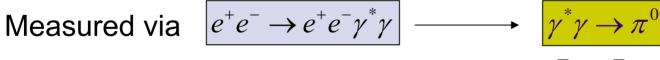
and F_{π} takes the very simple form $F_{\pi}(Q^2) \xrightarrow[Q^2 \to \infty]{} \frac{16 \pi \alpha_s(Q^2) f_{\pi}^2}{Q^2}$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.



where f_{π}^{2} =93 MeV is the $\pi^{+} \rightarrow \mu^{+} \nu$ decay constant.


Meson Form Factor Experiments

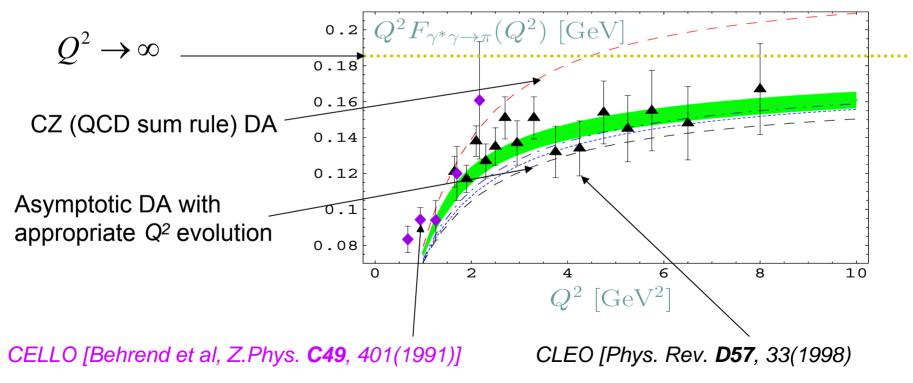

- Theoretically, meson form factors present clean testing ground for our understanding of bound quark systems
- Due to lack of "meson targets", more challenging experimentally than hadron form factors
- Experiments to date have measured:
 - π^0 form factor measured via $e^+e^- \rightarrow e^+e^-\pi^0$ up to $Q^2 = 8 \text{ GeV}^2$
 - π^+ form factor measured via $\pi^+e^- \rightarrow \pi^+e^-$ and $p(e,e'\pi^+)n$ to $Q^2=2.5 \text{ GeV}^2$
 - K+ form factor measured via K⁺e⁻ → K⁺e⁻ up to Q²=0.1 GeV²

process

•Good test of pion distribution amplitude

pure QED

Form Factor


- One electron scattered at large angle (detected) yielding virtual photon with large Q²
- Second electron (undetected) scattered at small angle yielding "nearly real" photon

1. Asymptotic pion distribution amplitude (DA) 2. Lowest order α_s

$$\left. \right\} F_{\gamma^* \gamma \pi^0}(Q^2) \stackrel{Q^2 \to \infty}{\to} \frac{2f_{\pi}}{Q^2} \right|$$

Form factor approaches leading order pQCD results at $Q^2=8$ GeV²

Pion Distribution Amplitude

- $F_{\gamma * \gamma \pi^{\circ}}$ (Q²) results taken as evidence that asymptotic pion DA appropriate as low as Q²=1 GeV²
- However, as will be seen, charged pion FF case is more complicated
- Interesting side note modified QCD sum rule DA describes $F_{\gamma*\gamma\pi^0}$ (Q²) results well

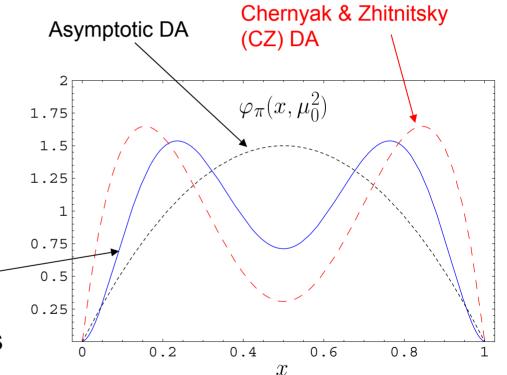
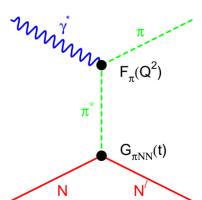


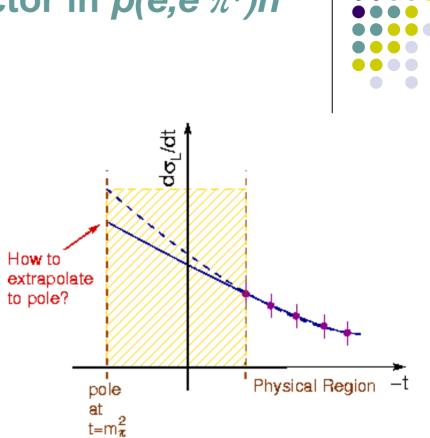
Figure from Bakulev et al, Phys. Rev. D70,033014


Measurement of π^+ **Form Factor**

- At low Q², F_{π^+} can be measured directly via high energy elastic π^+ scattering from atomic electrons
 - CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25 \text{ GeV}^2$ [Amendolia et al, NPB277, 168 (1986)]
 - These data used to constrain the pion charge radius

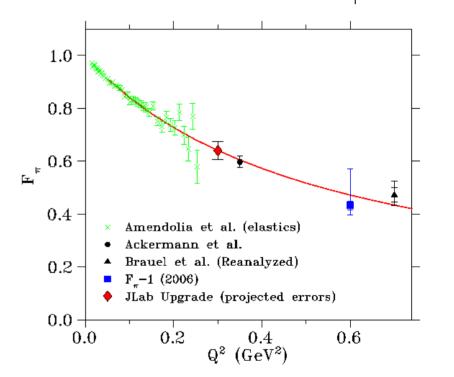
 $r_{\pi} = 0.657 \pm 0.012$ fm

- At larger Q², F_π must be measured indirectly using the "pion cloud" of the proton via p(e,e'π⁺)n
 - At small *-t*, the pion pole process dominates *σ*_L
 - F_{π}^{2} in Born term model

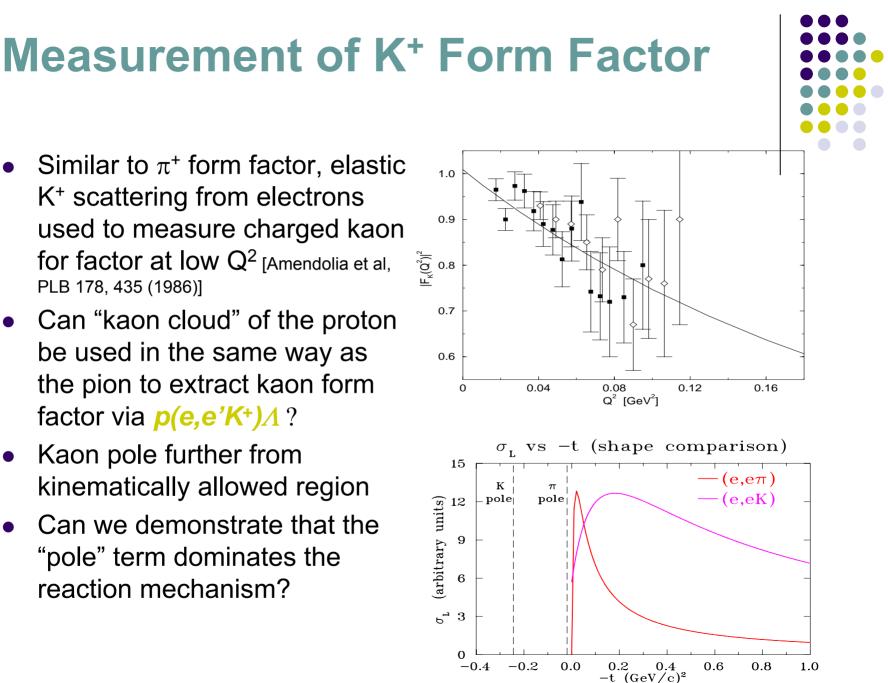

 $\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m^2)} g_{\pi NN}^2(t) F_{\pi}^2(Q^2,t)$

Extraction of π^+ Form Factor in $p(e,e'\pi^+)n$

- π⁺ electroproduction can only access *t<0* (away from pole)
- Early experiments used "Chew-Low" technique
 - measured –*t* dependence
 - Extrapolate to physical pole
- This method is unreliable different fit forms consistent with data yet yield very different FF



• Cross section model incorporating FF is required!

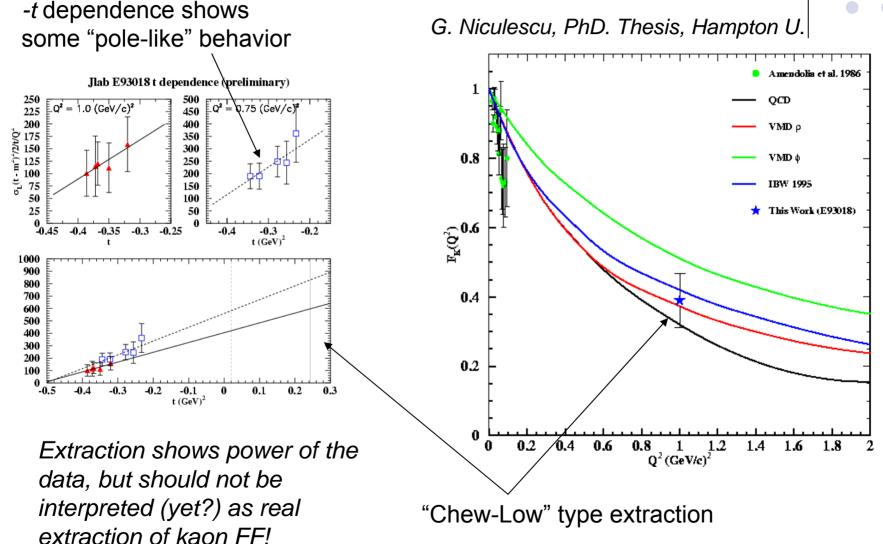

 \rightarrow *t-pole* "extrapolation" is implicit, but one is only fitting data in physical region

Check of Pion Electroproduction Technique

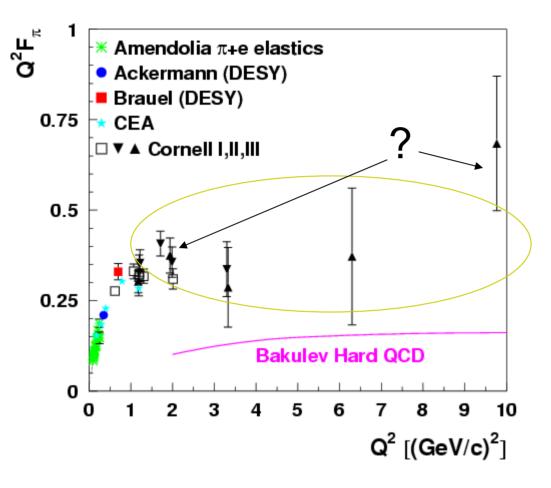
- Does electroproduction really measure the physical formfactor since we are starting with an off-shell pion?
- This can be tested making p(e,e'π⁺) measurements at same kinematics as π+e elastics
- Looks good so far
 - Ackermann electroproduction data at $Q^2 = 0.35 \text{ GeV}^2$ consistent with extrapolation of SPS elastic data

An improved test will be carried out after the JLAB 12 GeV upgrade \rightarrow smaller Q2 (=0.30 GeV²) \rightarrow -t closer to pole (=0.005 GeV²)

Kaon Form Factor at Large Q²


- JLAB experiment E93-018 extracted –t dependence of K⁺ longitudinal cross section near Q²=1 GeV²
- A trial Kaon FF extraction was attempted using a simple Chew-Low extrapolation technique

$$\sigma_L \approx \frac{-2tQ^2}{\left(t - m_K^2\right)^2} k(eg_{K\Lambda N})^2 F_K^2(Q^2)$$

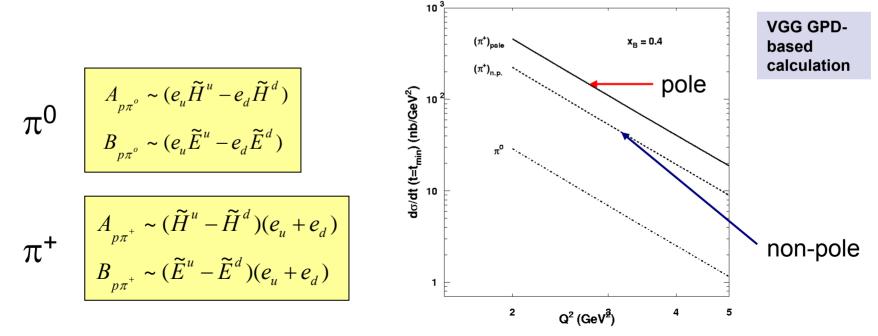

- g_{KAN} poorly known
 - Assume form factor follows monopole form
 - Used measurements at $Q^2=0.75$ and 1 GeV² to constrain g_{KAN} and F_K simultaneously
- Improved extraction possible using VGL model?

Test Extraction of K⁺ Form Factor

$F_{\pi^+}(Q^2)$ Measurements before 1997

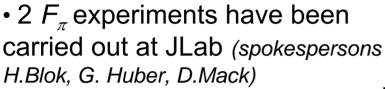
•Older data at large Q^2 (> 1 GeV²) extracted F_{π} from unseparated cross sections

•Used extrapolation of σ_{T} fit at low Q² to isolate σ_{L}


•Largest Q^2 points also taken at large $-t_{min}$

•Carlson and Milana [PRL 65, 1717(1990)] predict M_{pQCD}/M_{pole} grows dramatically for $-t_{min}$ >0.2 GeV²

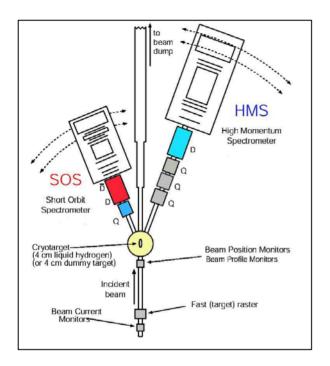
•Pole term may not dominate!


F_{π} Backgrounds

- Carlson and Milana prediction only real guidance as to size of non-pole backgrounds
- $-t_{min} < 0.2 \text{ GeV}^2$ constraint limits Q² reach of F_{π} measurements (for older data, 6 GeV JLab data, and future 12 GeV JLab measurements)
- Measurement of π^0 longitudinal cross section could help constrain pQCD backgrounds
- Example: in a GPD framework, π^+ and π^0 cross sections involve different combinations of same GPDs **but** π^0 **has no pole contribution**

F_{π} Program at JLab

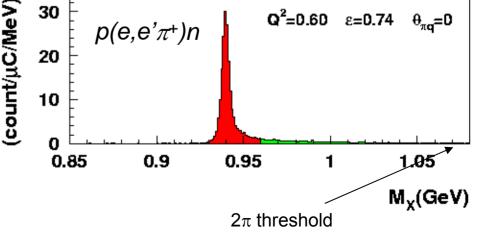
•F_π-1: Q2=0.6-1.6 GeV² •F_π-2: Q2=1.6, 2.45 GeV²


• Second experiment took advantage of higher beam energy to access larger *W*, smaller *-t*

Expt	Q² (GeV²)	W (GeV)	∣t _{min} ∣ (Gev²)	E _e (GeV)
F _π -1	0.6-1.6	1.95	0.03-0.150	2.445-4.045
F _π -2	1.6,2.45	2.22	0.093,0.189	3.779-5.246

- Full deconvolution of *L/T/TT/LT* terms in cross section
- Ancillary measurement of π^-/π^+ (separated) ratios to test reaction mechanism
- Both experiments ran in experimental Hall C: F_{π} -1 in 1997 and F_{π} -2 in 2003

JLab *F*_π Experiment Details


 Easy to isolate exclusive channel \rightarrow Excellent particle identification \rightarrow CW beam minimizes "accidental" coincidences \rightarrow Missing mass resolution easily excludes 2-pion contributions

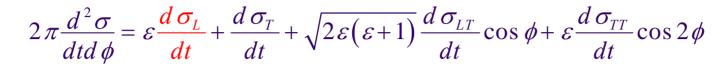
- Short Orbit Spectrometer = e⁻
- •High Momentum Spectrometer = π^+

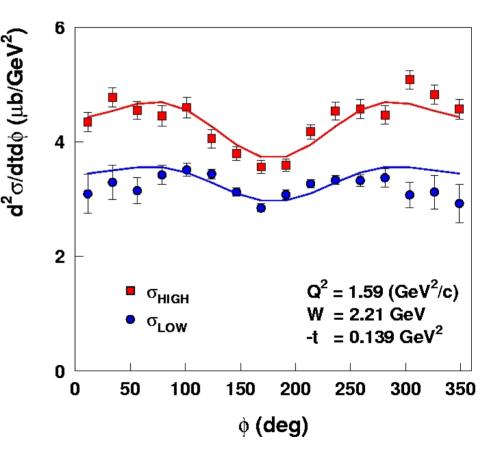
 \rightarrow Relatively small acceptance – easily understood

 \rightarrow "Pointing", kinematics well constrained Cryogenic targets, high currents yield relatively fast measurement

> $F\pi$ -1 missing mass distribution p(e,e'π+)n

- Rosenbluth separation required to isolate σ_{L}

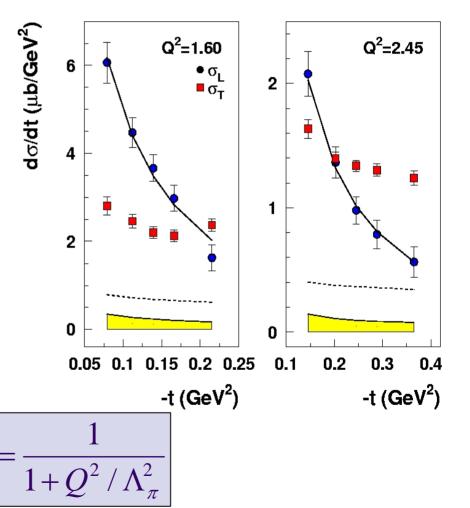

•Measure cross section at fixed (*W*, *Q*², -*t*) at 2 beam energies


•Simultaneous fit at 2 ϵ values to determine σ_L , σ_T , and interference terms

• Control of point-to-point systematic uncertainties crucial due to $1/\epsilon$ error amplification in σ_L •Careful attention must be paid to spectrometer acceptance, kinematics, efficiencies, ...

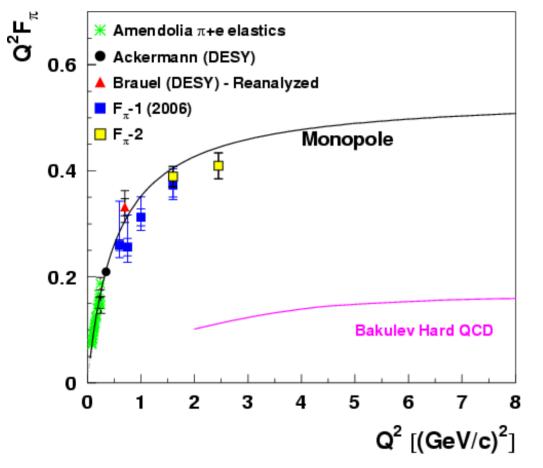
Horn et al, PRL97, 192001,2006

Measuring σ_L

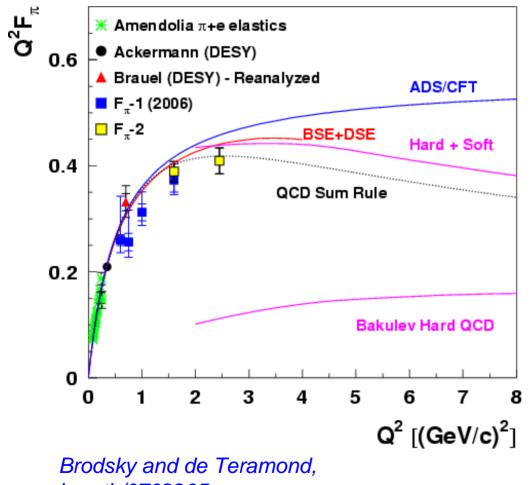


F_{π} Extraction from JLab data

 $F_{\pi}(Q^2)$

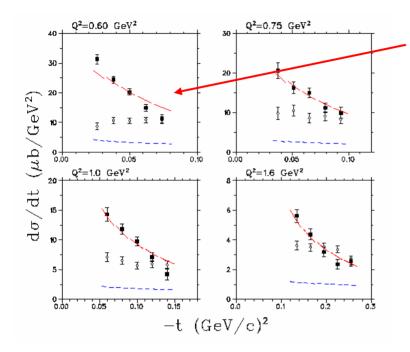

- Model is required to extract F_{π} from σ_L
- JLab F_π experiments used the VGL Regge model [Vanderhaeghen, Guidal, Laget, PRC 57, 1454 (1998)]
 - Propagator replaced by π and ρ Regge trajectories
 - Most parameters fixed by photoproduction data
 - 2 free parameters: Λ_{π} , Λ_{ρ}
 - At small -t, σ_L only sensitive to Λ_{π}

Horn et al, PRL97, 192001,2006


 $F_{\pi^+}(Q^2)$ in 2007

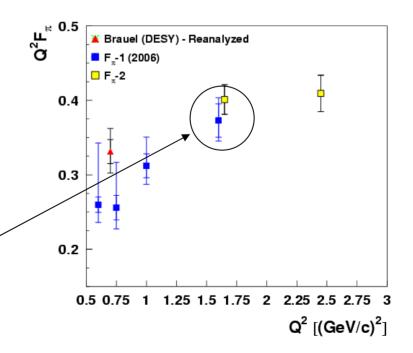
- Only true L-T separated data shown
- Trend suggested by extractions from unseparated cross sections still holds
 - Far from asymptotic limit
 - Inclusion of k_T effects has little impact
- Several effective models do a good job describing the data (QCD sum rules, constituent quark models, etc.)

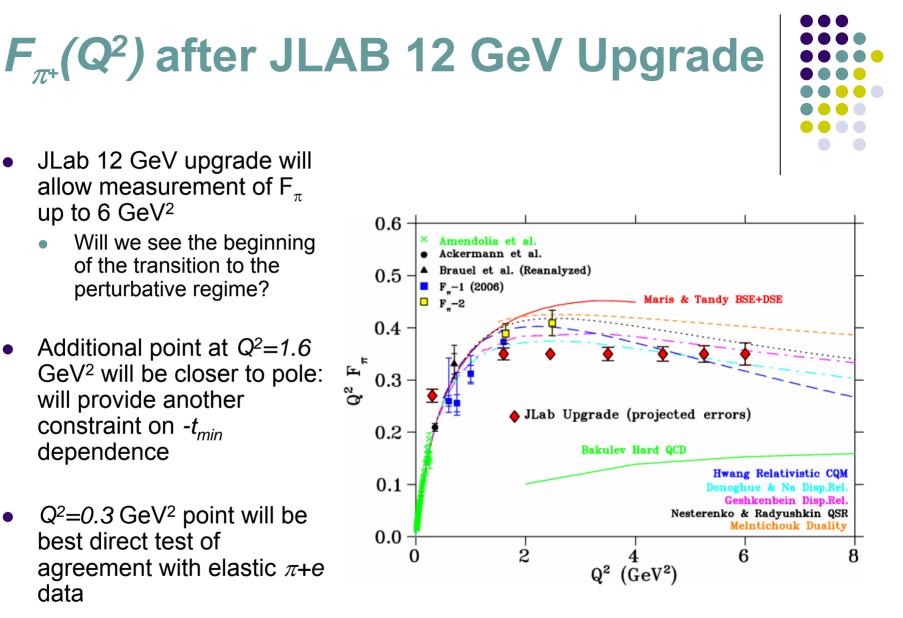

 $F_{\pi^+}(Q^2)$ in 2007


Brodsky and de Teramond, hep-th/0702205 → Anti-de Sitter/Conformal Field Theory approach Maris and Tandy, Phys. Rev. **C62**, 055204 (2000) `→ relativistic treatment of bound quarks (Bethe-Salpether equation + Dyson-Schwinger expansion)

Nesterenko and Radyushkin, Phys. Lett. **B115**, 410(1982) → Green's function analyticity used to extract form factor

A.P. Bakulev et al, Phys. Rev. **D70** (2004) →Hard contribution to NLO with improved pion DA →Soft contribution from local duality


Model/Intepretation Issues


Even if model describes data, does it give the "physical" form factor?
→Test by extracting FF at different distances from -t pole
→Ex: F_π-2, -t_{min}=0.093 GeV²
F_π-1, -t_{min}=0.15 GeV²

• VGL Regge model does not describe -t dependence of F_{π} -1 σ_{L} at lowest Q^{2}

→ Leads to large systematic errors for F_{π} →Underscores the need for additional models

data

E12-06-101: G. Huber and D. Gaskell spokespersons

Summary

- Access to meson form factors in space-like region experimentally difficult
 - π^0 measurements most direct
 - π⁺ (K⁺?) require model or extrapolation to extract FF at physical meson mass
- *F*_{γ*γπν} (Q²) results suggest perturbative behavior at Q² as low as 1 GeV²
- F_{π^+} results more complicated at $Q^2=2.5$ GeV², data are still far from simple asymptotic picture
 - Soft processes seem to play a more important role for π⁺
- Large Q2 K+ form factor measurements even more difficult
 - Large kaon mass means pole further from physically accessible region interpretation less straightforward
 - F_{K+} accessible with refined models? With what uncertainty?
- JLab 12 GeV upgrade will dramatically improve π^+ data set
 - Will we begin to see the transition to perturbative regime?