Photodisintegration of the deuteron, and 3He

R Gilman Rutgers University / Jefferson Lab

- Introduction / Motivation
- The Past
- The Recent / Future Present
- The Future Perfect

Exclusive Reactions at High Momentum Transfer Jefferson Lab May 21-24, 2007

Motivation / Introduction

 2007 Long Range Plan: "We recommend completion of the 12 GeV Upgrade at Jefferson Lab. The Upgrade will enable new insights into the structure of the nucleon, the transition between the hadronic and quark/gluon descriptions of nuclei, and the nature of confinement."

Exclusive Reactions at High Momentum Transfer Jefferson Lab May 21-24, 2007 Are nucleons made up of hadrons or of quarks and gluons? Are nucleons made up of hadrons or of quarks and gluons?

• Yes, both.

Are nucleons made up of hadrons or of quarks and gluons?

- Yes, both.
- The issue is under what conditions we are better off with a theory based hadrons vs. a theory based on quarks and gluons

Hadrons rule!

- Generally, exclusive reactions are well understood with hadronic theories based on the NN and photonucleon interactions, etc.:
 - A(e,e') elastic scattering
 - A(e,e'p) reactions, particularly quasifree kinematics
- Whatever the quark effects are, they appear to be effectively incorporated into the hadronic theory

Hadrons rule! 1 0[°] 10⁻² 10 $A(Q^2)$ 10^{-6} 10⁻⁸ 1 0⁻¹⁰ 10⁻¹²

0

2

6

4

 $Q^2 (GeV^2)$

8

 d(e,e')d elastic scattering described well as A(Q) falls > 8 orders of magnitude

7

Elastic ed T₂₀ Data

 Improved low Q data were measured at Bates BLAST. (Figure from Tsentalovich, Nucleon05.) Data well described by several theories.

Quarks and gluons

- Some reactions are simply understood with quarks and gluons, or at least we have no good hadronic theory for them:
 - A(e,e') deep inelastic scattering
 - High Ey photodisintegration reactions
- Both these reactions probe nuclei at high Q^2 (or -t) and high W

The Past

Hard Scattering Regime Experiments

- SLAC NE8, NE17
- JLab Hall C E89-012, E96-003
- Yerevan (Σ)
- JLab Hall A E89-019, E00-007 (C_{x'}, p_y, C_{z'}), E99-008
- JLab Hall B E93-017
- JLab Hall B: ³He [S. Strauch]

90° Excitation Functions

- Cross sections fall by a factor of 30,000 from 1

 4 GeV, ~following
 `expected'' quark scaling, dσ/dt ~ s⁻¹¹
- Hadronic theories not satisfactory and not shown
- Most quark models normalized

The Quark Models

- QGS: Regge phenomenology to evaluate 3-quark exchange, justified by dominance of planar diagrams
- RNA, HRM, TQC, CQM: Photon absorbed and quarks exchanged; might be related to NN elastic scattering – all use hard scattering approximations

Onset of Scaling

- P. Rossi et al, PRL 94, 012301 (2005) Scaling needs
- Scaling needs
 p_T > 1.1 GeV/c

Some Observables in $d(\gamma,p)n$

• $d\sigma/d\Omega$, Σ , T, $C_{x'}$, $p_{y'}$, $C_{z'}$

Σ Asymmetry

- HHC Hadron Helicty
 Conservation leads to
 Σ = -1
- Adamian *et al.* showed
 Σ heads away from
 HHC, with increasing
 energy
- Grishina et al. pointed out iso-vector (scalar) limit is $\Sigma = 1$ (-1)

Induced Polarization p

- Hadronic prediction, that D₁₃ + D₁₅ leads to large resonance peak, falsified
- HHC leads to p_y = 0, and p_y vanishes above 1 GeV
- HRM predicts p_y small,
 <0

Polarization Transfer

- Schwamb & Arenhövel prediction good at low energies
- C_x, small, but not vanishing, so no HHC
- Cannot rule out or strongly support HRM
 / QGS / approach to HHC

Recent / Future Present

- JLab E00-007: X Jiang et al., PRL 98, 182302 (2007)
 - Recoil polarization angular distribution at 2 GeV
- Novosibirsk t_{2i} data: I Rachek et al., PRL 98, 182303
 (2007)
 - tensor polarizations up to ~600 MeV
- JLab E05-103: J Glister et al.
 - Ran July-Sep 2006
 - Angular distribution for recoil polarizations from
 280 360 MeV
- JLab Hall B ³He(γ,pp)n: S. Strauch et al. preliminary data, and Brodsky et al. theory article

Hall A E00-007: X Jiang et al.

- E_v ~ 2 GeV
- $C_{z'}$ large at forward angles, like QGS + HR
- C_x and p_y cross 0 near
 90°: in HR, if isovector photon dominance, these ≈ φ₅, which vanishes at 90°
- Perhaps similar to Σ?

Novosibirsk t₂₁

- I Rachek et al., PRL 98, 182303 (2007)
- Calculations from Levchuk, Arenhovel, Schwamb

21

Hall A E05-103: J Glister et al.

- E_v ~ 280 360 MeV
- Map out region in which calculations diverge from p_y data
- Determine C_x and C_z
 to further test
 breakdown
- Note that cross sections, Σ, ... are okay here

Hall A E05-103: J Glister et al.

- Near on-line preliminary results
- Calculations
 from
 Schwamb:
 original (solid)
 and latest
 (dash)
- Data from 20-110°, 280-360 MeV

³He (pp) Disintegration

- Brodsky et al, PLB
 578, 69 (2003): ratio
 of pp to pn well
 determined in theory
- At low energy, σ(γpp)
 / σ(γpn) ~ 0.1: pp
 dipole moment
 vanishes: JM Laget
- Quark models predict larger ratio: slow 2nd order or fast 1st order phase transition?

³He (pp) a_n Distribution

 Light cone momentum fraction, a = (E-p_z)/m,

is conserved:

 $a_{v} + a_{He} = 0 + 3 = a_{p1} + a_{p2} + a_{n}$

- Soft FSI "do not" affect a, so a_n reflects neutron spectator wave function
- RNA short range/broad, HRM long range/narrow

 Model-independent check of long vs short range dynamics

³He (pp) Oscillations

- Prominent oscillations in pp cross section, as opposed to flatter pn cross section, reflected in oscillations in ypp, as opposed to flatter energy dependence in yd?
- To match s and t, compare 60° pp to 90° ypp

³He(y,pp)n Measured!

 Hall B experiment, analyzed by S.
 Strauch, GWU (now SC)

PRELIMINARY

³He(y,pp)n Neutron Spectator?

Is the neutron a spectator? Cut at 0.1 - 0.25 GeV/c

³He(y,pp)n Cross Sections

- Red: "γpp->pp", symmetric about
 90°
- Blue: γd->pn x ¼, asymmetric about 90°
- Cross sections for γpp like backangle γd, near 1 GeV

³He(y,pp)n Cross Sections

the right approach?

Photon Energy E, (GeV)

³He(γ ,pp)n a_n Distribution

- Hard distribution from short-range physics, evidence for TQC?
- 1 GeV/c nucleons

 in c.m. are too low
 in energy: lots of
 rescattering
 broadens
 distribution

Future Perfect

Hall A E03-101: ³He(γ,pp)n

³He(y,pp)n: Hall A E03-101

- Is pp disintegration much smaller than, about equal to, or much larger than deuteron disintegration
- Is there a sudden change in the ratio (phase transition)?
- Is the process long or short range (a,)?

• Scheduled to start in $\sim 2\frac{1}{2}$ weeks

Future Perfect

- Hall A E03-101: ³He(γ,pp)n
- The results of the ³He experiment that is about to start will clearly influence any future work, but we can examine what is possible:
 - Study issue of iso-scalar vs iso-vector by measuring Σ asymmetry in Hall B up to ~3 GeV
 - If SRC are determined to be underlying physics, expand study to selected heavier targets as part of the SRC program
 - If there is a "phase transition" in ³He/d, study it
 - Continue to higher energies with 12 GeV upgrade

Summary

- Hadronic d.o.f. describe few-body elastic and QF scattering well; going to high Q² is insufficient to guarantee large quark effects
- We know lots of details in yd -> pn it is clear that detailed models like those used at low energy do not work - but the underlying quark dynamics is unclear
- ³He photo-disintegration will help sort out if any of the existing quark models represents the underlying physics