Photodisintegration of the deuteron, and 3He

R Gilman
Rutgers University / Jefferson Lab

- Introduction / Motivation
- The Past
- The Recent / Future Present
- The Future Perfect

Exclusive Reactions at High Momentum Transfer
Jefferson Lab
May 21-24, 2007
Motivation / Introduction

- 2007 Long Range Plan: “We recommend completion of the 12 GeV Upgrade at Jefferson Lab. The Upgrade will enable new insights into the structure of the nucleon, the transition between the hadronic and quark/gluon descriptions of nuclei, and the nature of confinement.”
Are nucleons made up of hadrons or of quarks and gluons?
Are nucleons made up of hadrons or of quarks and gluons?

- Yes, both.
Are nucleons made up of hadrons or of quarks and gluons?

- Yes, both.
- The issue is under what conditions we are better off with a theory based on hadrons vs. a theory based on quarks and gluons.
Hadrons rule!

- Generally, exclusive reactions are well understood with hadronic theories based on the NN and photopion nucleon interactions, etc.:
 - $A(e,e')$ elastic scattering
 - $A(e,e'p)$ reactions, particularly quasifree kinematics
- Whatever the quark effects are, they appear to be effectively incorporated into the hadronic theory
Hadrons rule!

- $d(e,e')d$ elastic scattering described well as $A(Q)$ falls >8 orders of magnitude
Elastic ed T_{20} Data

- Improved low Q data were measured at Bates BLAST. (Figure from Tsentalovich, Nucleon05.)
- Data well described by several theories.
Quarks and gluons

- Some reactions are simply understood with quarks and gluons, or at least we have no good hadronic theory for them:
 - $A(e,e')$ deep inelastic scattering
 - High E_{γ} photodisintegration reactions
- Both these reactions probe nuclei at high Q^2 (or $-t$) and high W
The Past
Hard Scattering Regime Experiments

- SLAC NE8, NE17
- JLab Hall C E89-012, E96-003
- Yerevan (Σ)
- JLab Hall A E89-019, E00-007 ($C_{x'}, p_y, C_{z'}$), E99-008
- JLab Hall B E93-017
- JLab Hall B: 3He [S. Strauch]
90° Excitation Functions

- Cross sections fall by a factor of 30,000 from 1 - 4 GeV, ~following ``expected'' quark scaling, \(\frac{d\sigma}{dt} \sim s^{11} \)
- Hadronic theories not satisfactory and not shown
- Most quark models normalized
The Quark Models

- **QGS**: Regge phenomenology to evaluate 3-quark exchange, justified by dominance of planar diagrams

- **RNA, HRM, TQC, CQM**: Photon absorbed and quarks exchanged; might be related to NN elastic scattering - all use hard scattering approximations
Onset of Scaling

- Scaling needs $p_T > 1.1 \text{ GeV/c}$
Some Observables in $d(\gamma,p)n$

- $d\sigma/d\Omega$, Σ, T, $C_{x'}$, p_y, $C_{z'}$.
HHC - Hadron Helicity
Conservation - leads to $\Sigma = -1$

Adamian et al. showed Σ heads away from HHC, with increasing energy

Grishina et al. pointed out iso-vector (scalar) limit is $\Sigma = 1$ (-1)
Induced Polarization p_y

- Hadronic prediction, that $D_{13} + D_{15}$ leads to large resonance peak, falsified.
- HHC leads to $p_y = 0$, and p_y vanishes above 1 GeV.
- HRM predicts p_y small, <0.
Polarization Transfer

- Schwamb & Arenhövel prediction good at low energies
- C_x small, but not vanishing, so no HHC
- Cannot rule out or strongly support HRM / QGS / approach to HHC
Recent / Future Present

- JLab E00-007: X Jiang et al., PRL 98, 182302 (2007)
 - Recoil polarization angular distribution at 2 GeV

- Novosibirsk t_{2i} data: I Rachek et al., PRL 98, 182303 (2007)
 - Tensor polarizations up to ~600 MeV

- JLab E05-103: J Glister et al.
 - Ran July-Sep 2006
 - Angular distribution for recoil polarizations from 280 - 360 MeV

- JLab Hall B 3He(γ,pp)n: S. Strauch et al. preliminary data, and Brodsky et al. theory article
- $E_\gamma \sim 2 \text{ GeV}$
- C_z large at forward angles, like QGS + HR
- C_x and p_y cross 0 near 90°: in HR, if isovector photon dominance, these $\approx \phi_5$, which vanishes at 90°
- Perhaps similar to Σ?
Novosibirsk t_{2i}

- I Rachek et al., PRL 98, 182303 (2007)
- Calculations from Levchuk, Arenhovel, Schwamb
Hall A E05-103: J Glister et al.

- $E_\gamma \sim 280 - 360$ MeV
- Map out region in which calculations diverge from p_γ data
- Determine $C_{x'}$ and $C_{z'}$ to further test breakdown
- Note that cross sections, Σ, ... are okay here
Hall A E05-103: J Glister et al.

- Near on-line preliminary results
- Calculations from Schwamb: original (solid) and latest (dash)
- Data from 20-110°, 280-360 MeV
\(^3\text{He} \text{ (pp) Disintegration}\)

- At low energy, \(\sigma(\gamma_{pp}) / \sigma(\gamma_{pn}) \sim 0.1\): pp dipole moment vanishes: JM Laget.
- Quark models predict larger ratio: slow 2nd order or fast 1st order phase transition?
$^3\text{He} \ (pp) \ \alpha_n$ Distribution

- Light cone momentum fraction, $\alpha = (E-p_z)/m$, is conserved:
 $\alpha_{\gamma} + \alpha_{\He} = 0 + 3 = \alpha_{p1} + \alpha_{p2} + \alpha_n$

- Soft FSI “do not” affect α, so α_n reflects neutron spectator wave function

- RNA short range/broad, HRM long range/narrow

- Model-independent check of long vs short range dynamics
$^3\text{He (pp) Oscillations}$

- Prominent oscillations in pp cross section, as opposed to flatter pn cross section, reflected in oscillations in γ_{pp}, as opposed to flatter energy dependence in γ_d?

- To match s and t, compare 60° pp to 90° γ_{pp}
3He(γ,pp)n Measured!

- Hall B experiment, analyzed by S. Strauch, GWU (now SC)
- PRELIMINARY

\[\begin{align*}
\gamma & \quad \theta_{cm} \\
p & \quad n \\
\text{pp c.m. frame} \end{align*} \]
$^3\text{He}(\gamma,pp)n$ Neutron Spectator?

- Is the neutron a spectator? Cut at 0.1 - 0.25 GeV/c
$^3\text{He}(\gamma,pp)n$ Cross Sections

- **Red**: "γpp→pp", symmetric about 90°
- **Blue**: γd→pn x $\frac{1}{4}$, asymmetric about 90°
- **Cross sections for γpp like back-angle γd**, near 1 GeV
$^3\text{He}(\gamma,pp)n$ Cross Sections

- Theory has 100 MeV/c cut
- Data small compared to γd, 10 – 25 % as large
- Scaling of σ by $E_\gamma \sim 1.3$ GeV in γd, p_γ vanished by ~ 1 GeV, $C'_{x',z'}$ slowly vanishing \Rightarrow I would expect a transition by 1 or 1.3 GeV
- Hint of a phase transition starting at 1.4 GeV -or- perhaps QGS or TQC is the right approach?
$^3\text{He}(\gamma,pp)n\ \alpha_n$ Distribution

- Hard distribution from short-range physics, evidence for TQC?
- 1 GeV/c nucleons in c.m. are too low in energy: lots of rescattering broadens distribution
Future Perfect

- Hall A E03-101: $^3\text{He}(\gamma,pp)n$
Is pp disintegration much smaller than, about equal to, or much larger than deuteron disintegration?

Is there a sudden change in the ratio (phase transition)?

Is the process long or short range (α_n)?

Scheduled to start in $\sim 2 \frac{1}{2}$ weeks
Future Perfect

- Hall A E03-101: 3He(γ,pp)n
- The results of the 3He experiment that is about to start will clearly influence any future work, but we can examine what is possible:
 - Study issue of iso-scalar vs iso-vector by measuring Σ asymmetry in Hall B up to ~3 GeV
 - If SRC are determined to be underlying physics, expand study to selected heavier targets as part of the SRC program
 - If there is a “phase transition” in 3He/d, study it
 - Continue to higher energies with 12 GeV upgrade
Summary

- Hadronic d.o.f. describe few-body elastic and QF scattering well; going to high Q^2 is insufficient to guarantee large quark effects.
- We know lots of details in $\gamma d \rightarrow pn$ – it is clear that detailed models like those used at low energy do not work – but the underlying quark dynamics is unclear.
- 3He photo-disintegration will help sort out if any of the existing quark models represents the underlying physics.