N* Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom

Ralf W. Gothe University of South Carolina

Exclusive Reactions at High Momentum Transfers May 21-24, 2007 Jefferson Lab, Newport News, VA

> Introduction
> N→Δ, N→Roper, and other N→N* Transitions
> 1π and 2π Production

Physics Goals

Understand QCD in the full strong coupling regime

- transition form factors to nucleon excited states allow us to study
- relevant degrees-of-freedom
- wave function and interaction of the constituents

CLAS for Inclusive ep \rightarrow e'X at 4 GeV

CLAS

CLAS for Exclusive $ep \rightarrow e'pX$ at 4 GeV

$N \rightarrow \Delta(1232)$ Transition Form Factors

→ Lattice QCD indicates a small oblate deformation of the $\Delta(1232)$ and that the pion cloud makes E_{1+}/M_{1+} more negative at small Q². → Data at low Q² needed to study effects of the pion cloud.

Ralf W. Gothe N³

Low-Q² Mutipole Ratios for R_{EM}, R_{SM}

C. Alexandrou et al., PRL, 94, 021601 (2005)

▷ Quenched LQCD describes R_{EM} within error bars, but shows discrepancies with R_{SM} at low Q². Pion cloud effects?

Ralf W. GotheN* Transition Form FactorsExclusive Reactions 2007

Low-Q² Mutipole Ratios for R_{EM}, R_{SM}

C. Smith

and Bates/MAMI results for R_{SM}.

Ralf W. Gothe

 R_{SM} at low Q². Pion cloud effects?

Constituent Counting Rule

Quark mass extrapolated to the chiral limit, where q is the momentum variable of the tree-level quark propagator using the Asquat action.

$N \rightarrow \Delta$ Multipole Ratios R_{EM} , R_{SM}

New trend towards pQCD behavior does not show up.

- $> R_{EM} \rightarrow +1$
- $> G_M^* \rightarrow 1/Q^4$
- > CLAS12 can measure R_{EM} and R_{SM} up to $Q^2 \sim 12 \text{ GeV}^2$.

N* Transition Form Factors

Ralf W. Gothe

Roper Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

Ralf W. Gothe

N* Transition Form Factors

Exclusive Reactions 2007

S₁₁(1535) Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

Energy-Dependence of π^+ **Multipoles for** P_{11} , S_{11}

I. Aznauryan (UIM)

The study of some baryon resonances becomes easier at higher Q².

Jefferson Pab

Ralf W. Gothe

N* Transition Form Factors

Legendre Moments of Structure Functions

Ralf W. Gothe

N* Transition Form Factors

πN invariant mass / MC phase spaceBES/BEPC, Phys. Rev. Lett. 97 (2006)

Fermion Helicity Conservation

Quark mass extrapolated to the chiral limit, where q is the momentum variable of the tree-level quark propagator using the Asquat action.

Ralf W. Gothe N* Transition Form Factors Exclusive Reactions 2007

D₁₃(1520) Helicity Asymmetry

Nucleon Resonances in 2π Electroproduction

Contributing Mechanisms to $\gamma^{(*)}p \rightarrow p\pi^+\pi^-$

Isobar Model JM05

- Full calculations
 - $---- \gamma p \rightarrow \pi^- \Delta^{++}$
- $\gamma p \rightarrow \pi^+ \Delta^0$
- $--- \gamma p \rightarrow \pi^+ D_{13}(1520)$
 - γр→**р**р
- $--- \gamma p \rightarrow \pi^{-} \Delta^{++}(1600)$
- $\gamma p \rightarrow \pi^+ F^0_{15}(1685)$

efferson Pal

direct 2π production

Combined fit of various single differential cross sections allowed to establish all significant mechanisms

JM05

Ralf W. Gothe

N* Transition Form Factors

Combined Analysis of $\gamma^{(*)}p \rightarrow p\pi^+\pi^-$

Fit with 3/2+(1720)

- Fit without $3/2^+(1720)$, only variation of electromagnetic and $\pi\Delta \rho P$ hadronic couplings and masses of P13(1720), P33(1600)

P13(1720) branching fraction for ρp extracted by a the fit within the JM05 model (without 3/2⁺(1720))

Preliminary real (M. Bellis) and published (M. Ripani) virtual photon data, combined fit needs both the candidate $3/2^+(1720)$ and the P₁₃(1720) state

Ralf W. Gothe

N* Transition Form Factors

Resonances and Background in $\gamma^{(*)}p \rightarrow p\pi^+\pi^-$

Combined 1π - 2π Analysis of CLAS Data

Jefferson Pab

- ➢ PDG at Q²=0
- Previous world data
- $> 2\pi$ analysis
- 1π-2π combined at Q²=0.65 GeV²
- Many more examples: P₁₁(1440), D₁₃(1520), S₃₁(1650), S₁₁(1650), F₁₅(1685), D₁₃(1700),
- EBAC at JLab: Full coupled channel analysis

22

JM05

Combined 1π - 2π Analysis of CLAS Data

1π Data Description by N^{*} Electro-Couplings of the Combined Analysis

CLAS $W=1.52 \text{ GeV } Q^2=0.65 \text{ GeV}^2$

 $W=1.68 \text{ GeV } Q^2=0.65 \text{ GeV}^2$ JM05

 $\gamma_v p \rightarrow \pi^0 p$

Ralf W. GotheN* Transition Form FactorsExclusive Reactions 2007

2π Data Description by N^{*} Electro-Couplings of the Combined Analysis

The successful description of all 1π and 2π observables measured with CLAS at $Q^2=0.65$ GeV² demonstrates the credibility of the N^{*} background separation.

Ralf W. Gothe

Jefferson Pal

N* Transition Form Factors

Exclusive Reactions 2007

Roper Electro-Coupling Amplitudes A_{1/2}, S_{1/2}

Inclusive Structure Function in the Resonance Region

Event Generators

- Genova-EG: Dipole Form Factor
- SI-DIS: Deep Inelastic Scattering

Ralf W. Gothe N* Transition Form Factors Exclusive

Kinematical Coverage of CLAS12

P₁₁(1440)

Conclusion: Do Exclusive Electron Scattering

