Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

ho^{0} Transverse Target Spin Asymmetry at HERMES

A. Hayrapetyan

University of Michigan for HERMES Collaberation

JLAB Exclusive Reactions at High Momentum Transfer, May 21, 2007

→ E → < E →</p>

hermes

UofM

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

1 Physics behind our measurement, why ρ^0

- Generalized Parton Distribution Functions and Ji sum rule
- Why ρ^0 , production mechanism and sensitivity

2 HERMES Experiment

- Transverse Target Spin Asymmetry
- 3 Analysis
 - Data Processing
 - Exclusive Production
 - ρ_L^0 , ρ_T^0 Separation

4 Results

- Comparison with GPD prediction
- Summary and Outlook

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

1 Physics behind our measurement, why ρ^0

- Generalized Parton Distribution Functions and Ji sum rule
- Why ρ^0 , production mechanism and sensitivity

2 HERMES Experiment

Transverse Target Spin Asymmetry

3 Analysis

- Data Processing
- Exclusive Production
- \square ρ_L^0 , ρ_T^0 Separation

4 Results

- Comparison with GPD prediction
- Summary and Outlook

LlofM

イロト イポト イヨト イヨト

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

Generalized Parton Distribution Functions and Ji sum rule

Generalized Parton Distribution Functions and Ji sum rule

 $\frac{1}{2}\int_{-1}^{1} dx \, x \left[H(x,\zeta,t) + E(x,\zeta,t)\right] \stackrel{t\to 0}{=} J_q$

UofM

A.Hayrapetyan

Physics behind our measurement, why ρ^0 $\stackrel{\circ}{\bullet}$	HERMES Experiment	Analysis o o o	Results o o

Why ρ^0 , production mechanism and sensitivity

Sensitive to quark and gluon exchange

A.Hayrapetyan ρ^0 TTSA at HERMES

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

- 1 Physics behind our measurement, why ho^0
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0 , production mechanism and sensitivity

2 HERMES Experiment

- Transverse Target Spin Asymmetry
- 3 Analysis
 - Data Processing
 - Exclusive Production
 - \square ρ_L^0 , ρ_T^0 Separation

4 Results

- Comparison with GPD prediction
- Summary and Outlook

LlofM

イロン イ理 とくほう くほう

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

THE POLARISED TARGET

- Dataset 2002, 2003, 2004, 2005 Data, Integrated Luminosity 171.6pb⁻¹
- Pure Gaseous Polarised Target, with high Polarisation pprox 75
- Flip of helicity every 90 sec in 0.5 sec, very small systematics

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results
	00		

Transverse Target Spin Asymmetry

Production Kinematics, angles

Angles define according to Trento convention

$$A_{UT} = -rac{\pi}{2} \mathcal{A}_{GPV}$$

LlofM

HERMES Experiment ○●	Analysis o o o	Results o o
	HERMES Experiment ⊙●	HERMES Experiment Analysis ○● ○ ○

Transverse Target Spin Asymmetry

Transverse Target Spin Asymmetry Transverse target polarization relative to lepton beam direction (measured):

$$A_{UT}^{I}(\phi,\phi_{s}) = \frac{1}{P_{T}} \frac{d\sigma(\phi,\phi_{s}) - d\sigma(\phi,\phi_{s}+\pi)}{d\sigma(\phi,\phi_{s}) + d\sigma(\phi,\phi_{s}+\pi)}$$

Transverse target polarization relative to virtual photon direction:

$$A_{UT}^{\gamma^*}(\phi,\phi_s) = \frac{1}{S_{\perp}} \frac{d\sigma(\phi,\phi_s) - d\sigma(\phi,\phi_s + \pi)}{d\sigma(\phi,\phi_s) + d\sigma(\phi,\phi_s + \pi)}$$

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

- 1 Physics behind our measurement, why ho^0
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0 , production mechanism and sensitivity

2 HERMES Experiment

Transverse Target Spin Asymmetry

3 Analysis

- Data Processing
- Exclusive Production
- \square ρ_L^0 , ρ_T^0 Separation

4 Results

- Comparison with GPD prediction
- Summary and Outlook

ħermes

LlofM

イロン イ理 とくほう くほう

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$ o	HERMES Experiment	Analysis o o	Results o o
Data Processing			

- Kinematic cuts: $W^2 > 4 GeV^2$, $Q^2 > 1 GeV^2$, y < 0.85
- Exclusive cuts:

 $0.6 < \textit{M}_{2\pi} < 1.0 \textit{GeV}, \ \Delta\textit{E} < 0.6 \textit{GeV}, \ -\textit{t}' < 0.4 \textit{GeV}^2$

- Take into account beam polarization related terms in fit procedure
- Monte Carlo studies
 - Determine background contamination
 - Acceptance effects
 - Cross Contamination between asymmetry moments
 - Check L-T separation
 - Kinematic dependencies of Acceptance/Asymmetry

LlofM

< ロ > < 同 > < 三 >

A.Hayrapetyan

Physics behind our measurement, why ρ^0 o	HERMES Experiment	Analysis ○ ○	Results o o
Exclusive Production			

$$e \rho \rightarrow e' \rho \rho^{0}, \rho^{0} \rightarrow \pi^{+} \pi^{-}$$

$$Exclusive \rho^{0} through Energy and Momentum transfer$$

$$= \Delta E = \frac{M_{x}^{2} - M_{p}^{2}}{2M_{p}}, t' = t - t_{0}$$

$$\int_{0}^{0} \int_{0}^{0.6 < M_{2n} < 1 (GeV), t' < 0.4 (GeV^{2}) \\ - 02.05 data - DIS norm - pythia - (proc + 91) \\ - 02.05 data - DIS norm - pythia - (proc + 91) \\ - 02.05 data - DIS norm - pythia - (proc + 91) \\ - 0.05 data - DIS norm - pythia - (proc + 91) \\ -$$

A.Hayrapetyan ρ^0 TTSA at HERMES

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results
	00		
		•	
0 0			

ρ_L^0, ρ_T^0 Separation

 $W(P_T, \cos \theta_{\pi\pi}, \phi, \phi_s) \propto$

(Diehl, Sapeta: hep-ph/0503023)

- Each ρ⁰ polarization state has a characteristic decay angular distribution
- Can use ρ^0 CM angle $\Theta_{\pi\pi}$ of π -meson to separate ρ_L^0 , ρ_T^0

$$\begin{bmatrix} \cos^{2} \theta_{\pi\pi} & r_{00}^{04} & \left(1 + P_{T} A_{UT,\rho_{L}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{L}}(\phi)\right) + \\ \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s}) + A_{UU,\rho_{T}}(\phi)\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s})\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s})\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s})\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s})\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \left(1 + P_{T} A_{UT,\rho_{T}}^{\prime}(\phi,\phi_{s})\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{00}^{04}\right) \\ = \frac{1}{2} \sin^{2} \theta_{\pi\pi} & \left(1 - r_{$$

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$	HERMES Experiment	Analysis	Results

- 1 Physics behind our measurement, why ho^0
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0 , production mechanism and sensitivity

2 HERMES Experiment

Transverse Target Spin Asymmetry

3 Analysis

- Data Processing
- Exclusive Production
- \square ρ_L^0 , ρ_T^0 Separation

4 Results

- Comparison with GPD prediction
- Summary and Outlook

hermes

LlofM

イロン イ理 とくほう くほう

A.Hayrapetyan

Physics behind our measurement, why ρ^0 ${}^{\rm O}_{\rm O}$

RMES Experiment	Analysis	Results

assuming SCHC holds we can compare_with Theory _

A.Hayrapetyan

Physics behind our measurement, why $ ho^0$ $\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\circ}}$	HERMES Experiment	Analysis o o o	Results o
Comparison with CDD prodiction			

Comparison with GPD prediction

★ E > < E >

UofM

Data hints positive J^u

In agreement with HERMES DVCS result

A.Hayrapetyan ρ^0 TTSA at HERMES

Physics behind our measurement, why ρ^0 o	HERMES Experiment	Analysis o o	Results ○ ●
Summary and Outlask			

- First extraction of $A_{UT}^{\sin(\phi-\phi_s)}$
- In SCHC separately for ρ_L^0 and ρ_T^0 by using a fit on the $\phi, \phi_s, \cos \theta_{\pi\pi}$ distributions
- ϕ -meson A_{UT} results coming soon

A.Hayrapetyan ρ^0 TTSA at HERMES