Real and Virtual Compton Scattering in Perturbative QCD

JLab, May 23, 2007

Motivation

-Forthcoming 12 GeV Upgrade and New JLab Data -Hall A Collab, PRL98, 152001(2007): s=5-11GeV ${ }^{2},-t=2-7 \mathrm{GeV}^{2}$ -Cornell Data, PRD19, 1921(1979): s=4.6-12.1GeV²,-t=0.7-4.3GeV²
-Several Analyses of RCS but Different Results in the Past
-E.Maina and G.R.Farra, PLB206, 120(1988)
-G.R.Farrar and H.Zhang, PRD41, 3348(1990);42, 2413(E)(1990)
-A.S.Kronfeld and B.Nizic, PRD44, 3445(1991)
-M.Vanderhaeghen, P.Guichon and J.Van de Wiele, NPA622, 144(1997)
-T.Brooks and L.Dixon, PRD62, 114021(2000)
Recent Agreement with Brooks and Dixon's Result
R.Thomson, A.Pang and C.Ji, PRD73,054023(2006)
-Extension to Virtual Compton Scattering
-Currently much interest in DVCS where GPD predictions are applicable -Only one previous PQCD calculation (Farrar and Zhang) and their RCS result is in disagreement with Brooks and Dixon's and ours.
-GPD predictions can be compared with the PQCD results for DVCS.
This can shed light on the applicability of both GPD and PQCD methods. $\left(\cap^{2} \gg-t \gg \wedge^{2}\right)$

Outline

- PQCD in Light-Front Dynamics(LFD)
- Hard Scattering Amplitude
- Distribution Amplitude
- Remarks on Computational Methods
- Real Compton Scattering Results
- Comparison with Previous Computations
- Comparison with JLab Data
- Extension to Virtual Compton Scattering
- Comparison with Previous Computations
- Link to GPD and Handbag Dominance
- Conclusions

LFD in Exclusive Processes

LFD in Exclusive Processes

Classification of Diagrams

QuickTime ${ }^{\text {TM }}$ and a
TIFF (LZW) decompressor are needed to see this picture.

A, C, E \longleftrightarrow B,D,F under $1 \longleftrightarrow$ 3;

Color factor for all type: $\mathrm{C}^{(\mathrm{d})}=4 / 9$;
Triple gluon contribution is absent due to the color factor.
For RCS, $M_{h h^{\prime}}^{\lambda \lambda^{\prime}}(s, t)=M_{\bar{h} \overline{h^{\prime}}}^{\overline{\bar{\lambda}} \bar{\prime}^{\prime}}(s, t) \quad$ dueto Parity Inv. $M_{h h^{\prime}}^{\lambda \lambda^{\prime}}(s, t)=M_{h^{\prime} h}^{\lambda^{\prime} \lambda}(s, t) \quad$ Time - reversal Inv.

Number of Contributing Diagrams

Single Photon (e.g. $\mathrm{F}_{1}{ }^{\mathrm{P}}$)
Attachment of a photon: (6/2)x7 = 21
Nonzero Diagrams: A1,A4,A7,C2,C7,E1,E5

QuickTime ${ }^{\text {TM }}$ and a TIFF (LZWW) decompressor
re needed to see this picture

Two Photons: (6/2)x7x8 = 168
RCS needs only A and C types due to T-inv. 52 Nonzero Diagrams:A11, $111, \ldots \mathrm{C} 12, \ldots$, C77. -A.S. Kronfeld and B.Nizic, PRD44, 3445(1991) Use $h=h '=1$ for proton helicities and $\left|\gamma_{\text {in }}>=\alpha\right| \uparrow>+\beta\left|\downarrow>,\left|\gamma_{\text {out }}>=\gamma\right| \uparrow>+\delta\right| \downarrow>$.

Virtual Compton Scattering can't take advantage of T-inv. 96 Nonzero Diagrams:A11, .., C77; A77,A77, ...,E12, ...,E55. -Alex (Chiu-Yan) Pang's Thesis, NCSU (1995) Virtual photon has also the longitudinal polarization.

```
A51
tdiag:=[[1,p1],[p3,2],[p1,1,2,p2],[p2,p3,3,3]]; plotsett:=DrawDiag(3,2,tdiag);
```

$\begin{array}{cc}A & B \\ A & B B \\ A A & B B\end{array}$
$A \quad B B$
AA BB
A BB AABB ** BB AA
BB A BB AA BB AA

A.Pang and C.Ji, J.Comp.Phys.115,267(94) COMPUTE;FeynComp;FeynGen;FeynDraw -Alex (Chiu-Yan) Pang's Thesis, NCSU (1995)
R. Thomson's hard work!

Summary of Theory

Leading twist PQCD approximation for proton Compton scattering gives helicity amplitude

$$
M_{h h^{\prime}}^{\lambda \lambda^{\prime}}=\sum_{i, d} \int d x_{1} d x_{2} d x_{3} d y_{1} d y_{2} d y_{3} \phi_{i}(x) T_{i}^{(d)} \phi_{\dot{i}}^{*}(y)
$$

subject to constraints $x_{1}+x_{2}+x_{3}=1$ and $y_{1}+y_{2}+y_{3}=1$
$h, \lambda\left(h^{\prime}, \lambda^{\prime}\right)$ helicities of i/c (o/g) proton, photon
$x(y) \quad$ longitudinal momentum fractions of $\mathrm{i} / \mathrm{c}(\mathrm{o} / \mathrm{g})$ quarks
i labels independent Fock states of the proton with distribution amplitudes $\phi_{i}(x)$
d labels the Feynman diagrams that contribute to hard scattering amplitude $T_{i}^{(d)}$

Distribution Amplitude

$$
\begin{aligned}
& \left|p_{\uparrow}\right\rangle=\frac{f_{N}}{8 \sqrt{6}} \int[d x] \sum_{i} \phi_{i}\left(x_{1}, x_{2}, x_{3}\right)\left|i, x_{1}, x_{2}, x_{3}\right\rangle ; \\
& \left|1 ; x_{1}, x_{2}, x_{3}\right\rangle=\left|u_{\uparrow}\left(x_{1}\right) u_{\downarrow}\left(x_{2}\right) d_{\uparrow}\left(x_{3}\right)\right\rangle, \\
& \left|2 ; x_{1}, x_{2}, x_{3}\right\rangle=\left|u_{\uparrow}\left(x_{1}\right) d_{\downarrow}\left(x_{2}\right) u_{\uparrow}\left(x_{3}\right)\right\rangle, \\
& \left|3 ; x_{1}, x_{2}, x_{3}\right\rangle=\left|d_{\uparrow}\left(x_{1}\right) u_{\downarrow}\left(x_{2}\right) u_{\uparrow}\left(x_{3}\right)\right\rangle ; \\
& \phi_{2}\left(x_{1}, x_{2}, x_{3}\right)=-\left[\phi_{1}\left(x_{1}, x_{2}, x_{3}\right)+\phi_{1}\left(x_{3}, x_{2}, x_{1}\right)\right], \\
& \phi_{3}\left(x_{1}, x_{2}, x_{3}\right)=\phi_{1}\left(x_{3}, x_{2}, x_{1}\right) ; \\
& {[d x]=d x_{1} d x_{2} d x_{3} \delta\left(1-x_{1}-x_{2}-x_{3}\right) ;} \\
& f_{N}=(5.2 \pm 0.3) \times 10^{-3}(G e V / c)^{2} .
\end{aligned}
$$

V.Chernyak and I.Zhitnitsky, Nucl.Phys.B246,52(84)
$\phi_{C Z}=120 x_{1} x_{2} x_{3}\left(1.69-9.26 x_{1}-10.94 x_{3}+22.70 x_{1}^{2}+13.45 x_{3}^{2}+9.26 x_{1} x_{3}\right)$
V.Chernyak,A.Ogloblin and I.Zhitnitsky,Sov.J.Nucl.Phys.48,536(88)
$\phi_{C O Z}=120 x_{1} x_{2} x_{3}\left(5.880-25.956 x_{1}-20.076 x_{3}+36.792 x_{1}^{2}+19.152 x_{3}^{2}+25.956 x_{1} x_{3}\right)$
I.King and C.Sachrajda,Nucl.Phys.B279,785(87)
$\phi_{K S}=120 x_{1} x_{2} x_{3}\left(8.40-26.88 x_{1}-35.28 x_{3}+35.28 x_{1}^{2}+37.80 x_{3}^{2}+30.24 x_{1} x_{3}\right)$
M.Gari and N.G.Stefanis,Phys.Lett.B175,462(86);PRD35,1074(87)
$\phi_{G S}=120 x_{1} x_{2} x_{3}\left(6.040-16.775 x_{1}-34.985 x_{3}-1.027 x_{1}^{2}+12.307 x_{3}^{2}+111.320 x_{1} x_{3}\right)$

Asymptotic DA

$$
\phi_{A S Y}=120 x_{1} x_{2} x_{3}
$$

AdS/CFT?

It is possible to write the helicity amplitude in the form

$$
M_{h h^{\prime}}^{\left\langle\lambda^{\prime}\right.}=\frac{4}{9}\left(4 \pi \alpha_{e m}\right)\left(4 \pi \alpha_{s}\right)^{2}\left(\frac{120 f_{N}}{8 \sqrt{6}}\right)^{2} \sum_{d m, n} \sum^{(d)}\left(m_{1}, m_{3}, n_{1}, n_{3}\right) I^{(d)}\left(m_{1}, m_{3}, n_{1}, n_{3}\right)
$$

where

$$
I^{(d)}\left(m_{1}, m_{3}, n_{1}, n_{3}\right)=\int_{0}^{1} d x_{1} d x_{2} d x_{3} d y_{1} d y_{2} d y_{3} \tilde{T}^{(d)} x_{1}^{m_{1}+1} x_{2} x_{3}^{m_{3}+1} y_{1}^{n_{1}+1} y_{2} y_{3}^{n_{3}+1}
$$

$m_{1}, m_{3}, n_{1}, n_{3}$ are powers of momentum fractions (from ϕ_{i})
$C^{(d)} \quad$ is a coefficient that sums contributions for 3 Fock states.
It is dependent on $z_{i}^{(d)}$ (product of charges of struck quarks) and the coefficients appearing in ϕ_{i}
$f_{N} \quad$ is a normalization constant (taken as $0.0052 \mathrm{GeV}^{2}$)
$\tilde{T}^{(d)} \quad$ is the color/flavor independent part of $T_{i}^{(d)}$

Kinematics

- For real photon: $R=1$, for DVCS: $R=2$
- $\widetilde{T}^{(d)}$ calculated as a function of S and $R:$ e.g.

$$
\begin{aligned}
& \tilde{T}_{A 16}^{\uparrow \uparrow}=\frac{8}{S^{2}} \frac{R^{3 / 2} s^{4}}{c} \frac{1-R x_{3}}{<\bar{y}_{1}, x_{3}><\bar{y}_{1}, \bar{x}_{1}><y_{3}, x_{3}>(1-R \bar{x}+i \varepsilon)} \\
& <y, x>=y\left(1-R s^{2} x\right)-R c^{2} x+i \varepsilon \\
& s=\sin (\theta / 2), c=\cos (\theta / 2), \bar{y}=1-y
\end{aligned}
$$

- See details of calculation for A51 in Appendix A of Thomson,Pang and Ji, PRD73, 054023 (2006).
- The pole expressions have been expanded into real and imaginary parts using

$$
\frac{1}{\langle y, x\rangle+i \varepsilon}=P\left(\frac{1}{\langle y, x\rangle}\right)-i \pi \delta(\langle y, x\rangle)
$$

where P means principal value.

- Delta function integrals have been evaluated explicitly.
- The remaining principal value integrals have been transformed using the 'folding method' of Kronfeld \& Nizic which renders the integrand finite over the range of integration.
- Brooks and Dixon used a different method to do the integrations (contour deformation)
- The integration has then been completed numerically using a Monte Carlo algorithm in Fortran.

Real and imaginary parts of all helicity amplitudes were tabulated in the
basis of Appell polynomial expansion up to A_{3} :
Thomson,Pang and Ji, hep-ph/0602164v2
for the computation of cross sections and phase calculations preformed in the range of R values (1.0, 1.25, 1.5, 1.75, 2.0) and angles (20° to 160°).

Comparison with previous work for real photon

$C O Z$ uu phase, comparing $B \& D$

- T. Brooks and L. Dixon, PRD62, 114021 (2000)
... R. Thomson, A. Pang and C. Ji, PRD73, 054023 (2006)

Initial-State Helicity Correlation

$$
A_{L L}\left(\text { or } K_{L L}\right)=\frac{\frac{d \sigma_{+}^{+}}{d t}-\frac{d \sigma_{+}^{-}}{d t}}{\frac{d \sigma_{+}^{+}}{d t}+\frac{d \sigma_{+}^{-}}{d t}}=\frac{\left|M_{\uparrow \uparrow}^{\uparrow \uparrow}\right|^{2}+\left|M_{\uparrow \uparrow}^{\uparrow \downarrow}\right|^{2}-\left|M_{\uparrow \uparrow}^{\downarrow \uparrow}\right|^{2}-\left|M_{\uparrow \uparrow}^{\downarrow \downarrow}\right|^{2}}{\left|M_{\uparrow \uparrow}^{\uparrow \uparrow}\right|^{2}+\left|M_{\uparrow \uparrow}^{\uparrow \downarrow}\right|^{2}+\left|M_{\uparrow \uparrow}^{\downarrow \uparrow}\right|^{2}+\left|M_{\uparrow \uparrow}^{\downarrow \downarrow}\right|^{2}}
$$

QuickTime ${ }^{\text {TM }}$ and a
TIFF (LZW) decompressor are needed to see this picture.
— T. Brooks and L. Dixon, PRD62, 114021 (2000)
--- M. Vanderhaeghen, P.Guichon and J. Van de Wiele, NPA622, 144 (1997)
-- A. S. Kronfeld and B. Nizic, PRD44, 3445 (1991)
..... G. R. Farrar and H. Zhang, PRD41, 3348 (1990);42, 2413(E) (1990)

JLab Data: $0.678 \pm 0.083 \pm 0.04$ at 120° $\mathrm{s}=6.9 \mathrm{GeV}^{2}, \mathrm{t}=-4.0 \mathrm{GeV}^{2}, \mathrm{u}=-1.1 \mathrm{GeV}^{2}$ PRL94,242001(2005)

\ddagger
QuickTime ${ }^{\text {TM }}$ and a
TIFF (LZW) decompressor are needed to see this picture.

Handbag: M.Diehl,T.Feldmann,R.Jakob and P.Kroll, PLB460,204(1999)

Diquark: P.Kroll, M.Schurmann and W.Schwiger, IJMPA6,4107(1991)

Handbag approach to wide-angle RCS using GPD

- It is argued, at currently accessible kinematics, the Compton scattering amplitude is dominated by soft overlap contributions which can be described in light front gauge via the handbag diagram.
- In this approach, the helicity amplitude is given by (for example)

$$
M_{++}^{\lambda \lambda^{\prime}}(s, t)=2 \pi \alpha_{e m}\left(H_{++}^{\lambda \lambda^{\prime}}(s, t)\left(R_{V}(t)+R_{A}(t)\right)+H_{--}^{\lambda \lambda^{\prime}}(s, t)\left(R_{V}(t)-R_{A}(t)\right)\right)
$$

where $\quad H_{+1}^{2 x}(s, t)$ denotes the amplitude for the subprocess $\gamma q \rightarrow \gamma q$ and $R_{A}(t), R_{r}(t)$ are soft form factors which can be expressed in terms of GPDs. For example, summing over flavors a

$$
R_{V}(t)=\sum_{a} e_{a}^{2} \int_{-1}^{1} \frac{d \bar{x}}{\bar{x}} H^{a}(\bar{x}, \xi=0, t)
$$

Scaled Unpolarized RCS Cross Section

 Hall A Collab, PRL98, 152001(2007)

Power $n=6$ scaling is not yet reached.
12 GeV upgrade is anticipated.

Virtual photon comparison: longitudinal polarization (l to d)

The results have been compared with Farrar and Zhang, PRD41,3348(1990).

Virtual photon comparison: longitudinal polarization (l to u)

Virtual photon comparison: up to up

Virtual photon comparison: up to down

Virtual photon comparison: down to up

Virtual photon comparison: down to down

Checking Handbag Dominance in PQCD

- FeynComp converted to work in Light Front gauge.
- Hand calculation of a few sample diagrams has been used to check the output of FeynComp.
- Explicit calculation using FeynComp shows the gauge invariance:

$$
\sum_{\text {Lightront }} \text { amplitudes }=\sum_{\text {Feymman }} \text { amplitudes }
$$

where the sum is over diagrams with photons attached to the same quarks.

Work in progress ...

Conclusions

- Agreement with Brooks \& Dixon in RCS results gives more confidence on our VCS calculation over the previous one by Farrar \&Zhang.
- JLab 12 GeV upgrade is highly desirable to shed some light on the validity of PQCD in exclusive processes.
- GPDs can be expressed in terms of DAs using PQCD at large momentum transfer and the previous results are currently under investigation.
- Handbag dominace check in PQCD analysis is also in progress.

