Deeply Virtual Pseudoscalar Meson Electroproduction

Valery Kubarovsky

Rensselaer Polytechnic Institute/Jlab

Outlook

- Physics Motivation
- e1-dvcs experiment (CLAS/Jlab)
- π/η electroproduction at 5.7 GeV
 - Cross section
 - Beam spin asymmetry
- Current status and future opportunities
- Conclusion

Introduction

Deeply virtual exclusive reactions

 $\gamma^*(Q^2) + N \rightarrow N + M \quad (M = \gamma, \text{meson})$

offer a unique opportunity to study the structure of the nucleon at the parton level as one varies both the size of the probe – the photon virtuality, Q^2 – and the momentum transfer to the nucleon, t

- Such processes can reveal much more information about the structure of the nucleon than either inclusive electroproduction (Q² only) or elastic form factors (t=- Q²)
- The basic for these considerations is the existence of the QCD factorization theorems

Valery Kubarovsky RPI/Jlab

Kinematic regions (Q²-t) <u>Kinematical Coverage</u>

Factorization Theorem

Collins, Frankfurt, Strikman -1997

High Q² Low t Region

- Factorization theorem states that in the limit $Q^2 \rightarrow \infty$ exclusive electroproduction of mesons is described by hard rescattering amlitude, generalized parton distributions (GPDs), and the distribution amplitude $\Phi(z)$ of the outgoing meson.
- The prove applies only to the case when the virtual photon has longitudinal polarization
- Q2 $\rightarrow \infty \sigma_L \sim 1/Q^6$, $\sigma_T/\sigma_L \sim 1/Q^2$
- The full realization of this program is one of the major objectives of the 12 GeV upgrade

Factorization in the High tLow 02 RegionRadyushkin 1998Diehl et al, 1998Huang, Kroll, 2000

- It has been argued that exclusive production of photons and mesons at large t, effectively proceeds via a partonic mechanism, and can be again be described in terms the GPD in the nucleon
- Theory predicts σ_L and σ_T in this kinematics

Pseudoscalar Mesons

- In the case of pseudoscalar meson production the amplitude involves the axial vector-type GPDs
- These GPDs are closely related to the distributions of quark spin in the proton. The function \tilde{H}, \tilde{E} reduces to the polarized quark/antiquark densities in the limit of zero momentum transfer
- The Fourier transform with respect to t, the socalled impact parameter distributions, describes the transverse spatial distribution of quark spin in the proton.

Flavor Separation and Helicity-Dependent GPDs

- DVCS is the cleanest way of accessing GPDs. However, it is difficult to perform a flavor separation.
- Vector and pseudoscalar meson production allows one to separate flavor and isolate the helicity-dependent GPDs.

Meson	GPD flavor	
	composition	
π^+	$\Delta u - \Delta d$	~ ~
π^0	$2\Delta u + \Delta d$	H E
$\mid \eta$	$2\Delta u - \Delta d$	II , D
ρ^0	2u+d	
ρ^+	u-d	H, H
ω	2u-d	,.

Valery Kubarovsky RPI/Jlab

"Precocious Factorization" Collins,Frankfurt,Strikman - 1997

- Precocious factorization could be valid already at relatively low Q² especially for ratios of cross sections as a function of x_B
- **For example** π^0 and η ratio on proton

$$\pi^{0}: \eta = \frac{1}{2} \left[\frac{2}{3} \Delta u + \frac{1}{3} \Delta d \right]^{2}: \frac{1}{6} \left[\frac{2}{3} \Delta u - \frac{1}{3} \Delta d + \frac{2}{3} \Delta u \right]^{2}$$

Cross Section Ratios as a function of x_B Collins,Frankfurt,Strikman -1997

All data are available. η/π^0 ratio from proton data will be released very soon

CLAS/Jlab e1-dvcs

Valery Kubarovsky RPI/Jlab

CLAS Lead Tungstate Electromagnetic Calorimeter

Kinematic Coverage

4 dimentional grid in Q^2 , x_B , t, and ϕ

Remarks on the following slides

- CLAS data
- All data are preliminary
- No radiative correction were applied
- Cross sections are in arbitrary units
- **No** σ_L / σ_T separation
- 12 GeV: Rosenbluth L/T separation

Oistribution
 Output
 Output

 $d\sigma_T$

 2π

 $d\sigma$

dtdø

 (Q^2, x, t, ϕ) =

* $p \rightarrow ep\pi$

 $d\sigma_{LI}$

dt

 $\cos\phi$

Fit of the ϕ -distribution gives us three structure functions

$$\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt}$$
$$\frac{d\sigma_{TT}}{dt}$$
$$\frac{d\sigma_{LT}}{dt}$$

 $\cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)}$

 $d\sigma_{TT}$

dt

 \mathcal{E}

 $d\sigma_L$

dt

do/dø

 $\gamma^* p \rightarrow ep \pi^0$

$\sigma_T + \epsilon \sigma_L$ as a function of t

σ_{LT} as a function of t

σ_{TT} as a function t

$(\sigma_T + \epsilon \sigma_L) \sigma_{TT} \sigma_{LT}$ as a function of t

Non-zero σ_{TT} and σ_{LT} imply that both transverse and longitudinal amplitudes participate in the process

$(\sigma_T + \varepsilon \sigma_L) \sigma_{TT} \sigma_{LT}$ in Regge Model (JML)

- The dashed lines correspond to the $\omega/\rho/b1$ Regge poles and elastic rescattering
- The full lines include also charge pion nucleon and Delta intermediate states.
- Regge model qualitatively describes the experimental data

do/dt

 $\gamma^* p \to ep \pi^0$

t-Slope Parameter as a Function of x_B and Q²

 $B(x_B, Q^2)$

Valer

$$\frac{d\sigma}{dt} \propto e^{B(x)t}$$

•B(x_B , Q²) is almost independent of Q²

•B(x_B) is decreasing with increasing x_B

t-dependence in GDP

Impact Parameter Dependent PDFs

Fourier transformation of GPD

$$IPD(x,b_x,b_y) = \frac{1}{(2\pi)^2} \int d^2 \Delta_{\perp} e^{i\Delta_{\perp}b_{\perp}} \widetilde{H}(x,0,\Delta_{\perp}^2)$$

- For impact parameter dependent parton distributions the perp width should go to zero for x→1
- In momentum space, this implies that tslope should decrease with increasing x, what we observe experimentally

Impact Parameter Dependant Axial Parton Distribution

From data fit

Impact Parameter Profile of axial current distribution

The curve is what we obtained from experimental data

The size of the proton decreases with increasing x

$π^0$ and η Beam Spin Asymmetry

$$\frac{d\sigma}{dtd\phi}(Q^{2}, x, t, \phi) = \frac{1}{2\pi} \left(\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + h \sqrt{2\varepsilon(\varepsilon-1)} \sin \phi \frac{d\sigma_{LT}}{dt}\right)$$

+ $h \sqrt{2\varepsilon(\varepsilon-1)} \sin \phi \frac{d\sigma_{LT}}{dt}$
h is the beam helicity

$$A = \frac{d^{4}\vec{\sigma} - d^{4}\vec{\sigma}}{d^{4}\vec{\sigma} + d^{4}\vec{\sigma}} \approx \alpha \sin \varphi$$

Any observation of a non-zero BSA would be indicative of an L'T interference. If σ_L dominates, σ_{LT} , σ_{TT} , and σ_{LT} go to zero

Valery Kubarovsky RPI/Jlab

π^{0} : Kinematical Coverage (Q²-x_B space)

A(ϕ) X_B=0.25 Q²=1.95 GeV² t=-0.29 GeV²

Balck curve – A=αsinφ Red curve – Regge model

Valery Kubarovsky RPI/Jlab

$A = \alpha \sin \phi$, α as a function of t

- The red curves correspond to the Regge model (JML)
- BSA are systematically of the order of 0.03-0.09 over wide kinematical range in x_B and Q²

η Beam Spin Asymmetry

Valery Kubarovsky RPI/Jlab

Conclusion

- Cross sections and asymmetries for the π⁰ and η exclusive electroproduction in a very wide kinematic range will be released soon
- These data will help us to understand better the transition from soft to hard mechanisms
- Data show that both transverse and longitudinal amplitudes participate in the exclusive processes at accessible kinematics
- The π⁰/η cross section ratio will check the hypothesis of precocious scaling

Questions to theory

What will our data tell us?

- What does t-slope $B(Q^2, x_B)$ tell us ?
- What can we learn from the Q² evolution of cross section?
- Can σ_{LT} and σ_{TT} help us to constrain $R = \sigma_L / \sigma_T$?
- Can we constrain the GPDs within some approximations and corrections which have to be made due to non-asymptotic kinematics?
- How big are the corrections? How close are we to asymptotia?

Q: What will come out from our marriage?

THE END

Valery Kubarovsky RPI/Jlab

do/dt $ep \rightarrow ep \eta$

Jlab

GPD and Deeply Exclusive Scattering

- In the past decades of electron-nucleon scattering, experiments dedicated to study the substructure of the nucleon have mainly focused either on the measurements of form factors or on measurements of deep inelastic structure functions
- Form factors and structure functions measure the proton structure in two orthogonal sub-spaces
- The Generalized Parton Distribution functions unite both the transverse spatial and the longitudinal momentum dependence

Factorization Theorem

 π^0 , η , ρ^0 , ω , ϕ ...

(Collins, Frankfurt, Strikman)

Q2 >>1 -*t* <<1

$$M(\rho_L) \approx \alpha_s \frac{1}{Q} \left[\int du \frac{\Phi(u)}{u} \right]_{-1}^1 dx \frac{1}{x - \xi + i\varepsilon} \left\{ aH(x,\xi,t) + bE(x,\xi,t) \right\}$$
$$\frac{d\sigma}{dt} = \frac{1}{16\pi(s - M^2)} |M|^2 \rightarrow \frac{1}{Q^6}$$

Q^2 slope as a function of x_B

Q^2 slope as a function of x_B

t-slope parameter as a function of Q²

$$\frac{d\sigma}{dt} \approx e^{b(Q^2)t}$$

Reduced cross sections as a function of t

Valery Kubarovsky RPI/Jlab

Reduced cross sections

 $\frac{d^{4}\sigma}{dQ^{2}dxdtd\phi} = \Gamma(Q^{2}, x)\frac{d\sigma}{dtd\phi}(Q^{2}, x, t, \phi)$ $\frac{d\sigma}{dtd\phi}(Q^2, x, t, \phi) = (\sigma_T + \varepsilon \sigma_L) + \varepsilon \sigma_{TT} \cos 2\phi + \sqrt{2\varepsilon(\varepsilon + 1)}\sigma_{LT} \cos \phi$

Goeke, Polyakov, Vanderhaeghen (ph-0106012)

Cross Section Predictions

Q⁻⁶ Scaling

Guichon, Gvilder Kullander havegehen

High Q2 Low t Region

- The high Q2-low t measurements are closely related to, and complement, to the DVCS experiments.
- The electroproduction of π⁰ and η mesons possess a number of unique features. In the partonic regime at high Q2, pseudoscalar production probes the 'polarized' GPDs, which contains information about spatial distributions of the quark spin.