$\pi N \rightarrow$ Multi- πN Scattering in the $1/N_c$ Expansion (HIK Bichard Lebed Phys Rev D75:016002 2007)

 $(\mathrm{HJK},\,\mathrm{Richard}\,\,\mathrm{Lebed},\,\mathbf{Phys.Rev.D75:}016002,\!2007)$

Herry Kwee Arizona State University

JLAB, May 23, 2007

Outline

- 1. Introduction
- 2. Scattering Amplitudes and N_c power counting
- 3. Theoretical Results
- 4. Phenomenological Results: Comparing to Experiment
- 5. Summary

Baryon resonances in QCD

Baryon resonances pose a peculiar conundrum:

- continuum contribution affect Argand diagram for meson-baryon scattering or photoproduction processes
- states with well-defined masses and quantum numbers, occur with a regularity \rightarrow a spectrum from some symmetry structure

One approach: construct scattering amplitudes that relate channels of different I, J, using other quantum numbers that emerge for QCD in the large N_c limit Motivation: Skyrme/Chiral Soliton Model (1980's)

Scattering Amplitude Characteristics

- The leading-order amplitudes in the 1/N_c expansion, expressed in terms of t-channel quantum numbers, have I_t = J_t (holds for 3-flavor as well as 2-flavor processes)
 (see M.P. Mattis and M. Mukerjee, Phys. Rev. Lett. 61, 1344 (1988))
- 2. For finite- N_c processes: Amplitudes with $|I_t J_t| = n$ are suppressed by at least $1/N_c^n$ compared to the leading order \rightarrow systematic expansion in $1/N_c$: lowest order + corrections from higher-order effects

(see for eq. T.D. Cohen, D.C. Dakin, A. Nellore, and R.F. Lebed, Phys. Rev. D **70**, 056004 (2004))

3. There exist linear relations among the scattering amplitudes in different channels \rightarrow degeneracies among poles (resonance masses and widths)

HJK/Lebed Approach

- Up to recently: only Baryon+Meson \rightarrow Baryon+Meson $1/N_c$ amplitude analysis
- Want to extend to baryon resonances with multipion final state (2-flavor only)
- non-strange 3-flavor processes are cumbersome but tractable
- but our scattering amplitude formula only accommodate BM → BM processes: must find a way to include multipion processes
- main goal: identifying the underlying pole structure by the presence/absence of certain decay channels (most incisive are η and mixed partial-wave $\pi\Delta$ final state)
- not good enough to predict numerical results for B.R.'s, need $1/N_c$ correction

N_c Power Counting

- $\pi N \to \pi N$ is $O(N_c^0)$
- $\pi N \to \pi \pi N$ is $O(N_c^{-1/2})$
- but can be $O(N_c^0)$ if it proceeds through:
 - 1. $\pi N \to \pi \Delta \to \pi(\pi N)$: Δ is stable for large N_c ($\Gamma \approx 1/N_c^2$) Real world: $N_c = 3$ and $\Gamma \approx 100$ MeV, small compared to its mass
 - 2. $\pi N \to \rho N \to (\pi \pi) N$: ρ too has $\Gamma \approx 1/N_c^2$
- confident experiment can separate $\pi\Delta$ and ρN from $\pi\pi N$ background

 $m + B \rightarrow m' + B'$ Scattering Amplitudes

$$S_{LL'SS'IJ} = \sum_{K,\tilde{K},\tilde{K}'} [K]([R][R'][S][S'][\tilde{K}][\tilde{K}'])^{1/2} \\ \times \left\{ \begin{array}{ccc} L & i & \tilde{K} \\ S & R & s \\ J & I & K \end{array} \right\} \left\{ \begin{array}{ccc} L' & i' & \tilde{K}' \\ S' & R' & s' \\ J & I & K \end{array} \right\} \\ \times \tau_{K\tilde{K}\tilde{K}'LL'}$$

• s(s'): spin of mesons i(i'): isospin of mesons

- L(L'): meson to baryon relative orbital angular momentum
- R(R'): baryon spin = isospin
- S (S'): total spin angular momentum (not including L/L') of the meson and baryon
- I, J: isospin, spin of the intermediate state
- $\bullet \ [X] = 2X + 1$
- $\left\{ \begin{array}{c} \\ \text{zeros} \end{array} \right\}$: 9j symbol \rightarrow 6j (one zero) \rightarrow 3j (two

More on Scattering Amplitudes Formula

- K: Grand Spin \equiv I+J
- $\tilde{\mathbf{K}} \equiv \mathbf{i} + \mathbf{L}$, and $\tilde{\mathbf{K}}' \equiv \mathbf{i}' + \mathbf{L}'$ (so that $\mathbf{K} = \tilde{\mathbf{K}} + \mathbf{s} = \tilde{\mathbf{K}}' + \mathbf{s}'$)
- first derivation: chiral soliton model, but this amplitude is the result of Large N_c QCD limit, not depending on any model assumption (see appendix of Cohen and Lebed, Phys. Rev. D **67**, 096008 (2003))
- The point: more $S_{LL'SS'IJ}$ amplitudes than $\tau_{K\tilde{K}\tilde{K}'LL'}$ amplitudes

1. linear relations among scattering amplitudes

2. multiplets of baryon resonances with degenerate mass and width pole in $S_{LL'SS'IJ} \rightarrow$ pole in $\tau_{K\tilde{K}\tilde{K}'LL'} \rightarrow$ pole in other $S_{LL'SS'IJ}$'s

• poles/resonant poles depend only on K

Partial-wave amplitudes for positive-parity $N_{1/2}$ resonances in multiplon processes (the πN final state is included for comparison). Expansions are given in terms of K amplitudes.

State	Poles	Partial Wave, K-Amplitudes		
$N_{1/2}^{+}$	K = 0, 1	$P_{11}^{(\pi N)(\eta N)}$	=	$-\frac{\sqrt{2}}{\sqrt{3}}\tau_{11111}$
		$P_{11}^{(\pi N)(\pi N)}$	=	$\frac{1}{3}\tau_{00011} + \frac{2}{3}\tau_{11111}$
		$P_{11}^{(\pi N)(\pi \Delta)}$	=	$\frac{\sqrt{2}}{3}\tau_{00011} - \frac{\sqrt{2}}{3}\tau_{11111}$
		$P_{11}^{(\pi N)(\omega N)_1}$	=	$\frac{1}{3}\tau_{00111} + \frac{2}{3}\tau_{11111}$
		$P_{11}^{(\pi N)(\omega N)_3}$	=	$\frac{\sqrt{2}}{3}\tau_{00111} - \frac{\sqrt{2}}{3}\tau_{11111}$
		$P_{11}^{(\pi N)(\rho N)_1}$	=	$\frac{\sqrt{2}}{3\sqrt{3}} au_{00111} - \frac{\sqrt{2}}{9} au_{11011}$
				$+\frac{2\sqrt{10}}{9} au_{11211}$
		$P_{11}^{(\pi N)(\rho N)_3}$	=	$-\frac{1}{3\sqrt{3}}\tau_{00111} - \frac{4}{9}\tau_{11011}$
				$+\frac{1}{\sqrt{3}}\tau_{11111} + \frac{\sqrt{5}}{9}\tau_{11211}$

 $L(L')_{2I2J}^{(initial)(final)_{2S'}}$

Partial-wave amplitudes for negative-parity $N_{1/2}$ resonances in multiplon processes (the πN final state is included for comparison). Expansions are given in terms of K amplitudes.

State	Poles	Partial Wave, K-Amplitudes		
$N_{1/2}^{-}$	K = 1	$S_{11}^{(\pi N)(\eta N)}$	=	0
,		$S_{11}^{(\pi N)(\pi N)}$	=	$ au_{11100}$
		$SD_{11}^{(\pi N)(\pi\Delta)}$	=	$- au_{11102}$
		$S_{11}^{(\pi N)(\omega N)_1}$	=	$ au_{11000}$
		$SD_{11}^{(\pi N)(\omega N)_3}$	=	$- au_{11202}$
		$S_{11}^{(\pi N)(\rho N)_1}$	=	$\sqrt{\frac{2}{3}} au_{11100}$
		$SD_{11}^{(\pi N)(\rho N)_3}$	=	$\frac{1}{\sqrt{6}}\tau_{11102} + \frac{1}{\sqrt{2}}\tau_{11202}$

Phenomenological Results

- 1. Consider only 3- or 4-star resonances as classified by the PDG
- 2. Association of resonances to poles labeled by K (determined by decay channels that occur prominently versus those that are absent or weak) seem robust, eq.:
 - (a) $\pi N \rightarrow \eta N$ contains a single K amplitude [with K = L]
 - (b) mixed partial wave $\pi N(L) \rightarrow \pi \Delta(L')$ contains a single K amplitude [with $K = \frac{1}{2}(L+L')$]
- 3. Prediction of the ratio of BRs between two decay channels is not always in accord with experiment, eq.: the ratios of πN to $\pi \Delta$ BR's at leading $[O(N_c^0)]$ order
- 4. But can easily be explained by $1/N_c$ corrections (see Cohen, Dakin, Nellore and Lebed in PRD **69**, 056001 (2004) next-to-leading order amplitude relations for πN to $\pi \Delta$)

Difficulties

- 1. Overall analysis does not yet include $1/N_c$ corrections: impossible to draw any conclusion from such mountain of information
- 2. Mesons involved $(\pi, \eta, \rho \text{ and } \omega)$ in these scatterings are widely different:
 - mass: 140 MeV \rightarrow 783 MeV, compensated in phase space using simple two-body decay formula
 - π and η : Pseudo-Nambu-Goldstone boson of spontaneous χSB ρ and ω : vector mesons with masses set by QCD scale
- 3. No chiral symmetry analysis
- 4. Data (PDG) is filled with internal contradictions: another reason we did not include $1/N_c$ correction

The following is example analysis for one channel: $N_{1/2}^+(P_{11})$: N(1440) (the Roper) and N(1710)

- Our calculation \rightarrow two poles: K = 0 and K = 1
- N(1440) has a very small, $(0\pm 1)\%$, ηN BR
- N(1710) has a small but nonnegligible ηN BR, $(6.2 \pm 1.0)\%$
- Comparing this to our tabulated result suggests that the Roper is a K=0 pole and the N(1710) is a K=1 pole
- Agrees well with the Roper as a radial excitation of ground-state N, which is a (nonresonant) K=0 state
- But leading-order prediction of $\pi N \rightarrow \pi N$ to $\pi N \rightarrow \pi \Delta$ BR's does not agree well with experiment
- As mentioned above, this discrepancy can be cured by $1/N_c$ -suppressed amplitudes

Summary

- 1. QCD symmetry in Large N_c limit: Baryon resonances multiplets emerge from scattering amplitudes
- 2. The scattering amplitude approach can be extended to include multiplon final state processes by introducing stable intermediate stated in Large N_c limit
- 3. Pole determination from absence/presence of certain decay channels is robust
- 4. Prediction of ratio of B.R.'s of two channels is not always accurate but can be accommodated by including $1/N_c$ correction

 $N_{1/2}^{-}(S_{11})$: N(1535) and N(1650).

- 1. Both resonances have significant ηN BR, $(53\pm1)\%$ and 3–10%
- 2. our leading-order results predict them to be zero
- 3. The $\eta N \rightarrow \eta N$ amplitude is purely K=0 at leading order, strongly suggesting that N(1535) is a K=0 pole that has a πN coupling through $O(1/N_c)$ mixing to K=1, while N(1650) is a K=1 pole that has an ηN coupling through $O(1/N_c)$ mixing to K=0. Further analysis for $\pi\Delta$ and ρN channels supports this assignment. The $K=1 \pi \Delta$ mixed partial wave SD_{11} has a BR of < 1% for N(1535) but 1–7% for N(1650). Moreover, the ρ and ω couplings are purely K=1 at leading order, while the N(1535) has a ρN BR of < 4%, the N(1650) has 4–12% (although available phase space may be an important factor for these cases)