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Baryon resonances in QCD

Baryon resonances pose a peculiar conundrum:

• continuum contribution affect Argand diagram for

meson-baryon scattering or photoproduction processes

• states with well-defined masses and quantum numbers, occur

with a regularity → a spectrum from some symmetry structure

One approach: construct scattering amplitudes that relate channels

of different I, J , using other quantum numbers that emerge for

QCD in the large Nc limit

Motivation: Skyrme/Chiral Soliton Model (1980’s)
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Scattering Amplitude Characteristics

1. The leading-order amplitudes in the 1/Nc expansion, expressed

in terms of t-channel quantum numbers, have It =Jt (holds for

3-flavor as well as 2-flavor processes)

(see M.P. Mattis and M. Mukerjee, Phys. Rev. Lett. 61, 1344 (1988))

2. For finite-Nc processes: Amplitudes with |It−Jt|=n are

suppressed by at least 1/Nn
c compared to the leading order →

systematic expansion in 1/Nc: lowest order + corrections from

higher-order effects

(see for eq. T.D. Cohen, D.C. Dakin, A. Nellore, and R.F. Lebed, Phys.

Rev. D 70, 056004 (2004))

3. There exist linear relations among the scattering amplitudes in

different channels → degeneracies among poles (resonance

masses and widths)
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HJK/Lebed Approach

• Up to recently: only Baryon+Meson → Baryon+Meson 1/Nc

amplitude analysis

• Want to extend to baryon resonances with multipion final state

(2-flavor only)

• non-strange 3-flavor processes are cumbersome but tractable

• but our scattering amplitude formula only accommodate BM → BM

processes: must find a way to include multipion processes

• main goal: identifying the underlying pole structure by the

presence/absence of certain decay channels (most incisive are η and

mixed partial-wave π∆ final state)

• not good enough to predict numerical results for B.R.’s, need 1/Nc

correction
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Nc Power Counting
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• πN → πN is O(N0
c )

• πN → ππN is O(N
−1/2
c )

• but can be O(N0
c ) if it proceeds through:

1. πN → π∆ → π(πN): ∆ is stable for large Nc (Γ ≈ 1/N2
c )

Real world: Nc = 3 and Γ ≈ 100MeV, small compared to its mass

2. πN → ρN → (ππ)N : ρ too has Γ ≈ 1/N 2
c

• confident experiment can separate π∆ and ρN from ππN

background
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m + B → m′ + B′ Scattering Amplitudes
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• s (s′): spin of mesons i (i′): isospin of mesons

• L (L′): meson to baryon relative orbital angular

momentum

• R (R′): baryon spin = isospin

• S (S′): total spin angular momentum (not

including L/L′) of the meson and baryon

• I, J : isospin, spin of the intermediate state

• [X] = 2X + 1

•

n o

: 9j symbol → 6j (one zero) → 3j (two

zeros)
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More on Scattering Amplitudes Formula

• K: Grand Spin≡I+J

• K̃≡ i+L, and K̃′
≡ i′+L′ (so that K=K̃+s=K̃′+s′)

• first derivation: chiral soliton model, but this amplitude is the result

of Large Nc QCD limit, not depending on any model assumption

(see appendix of Cohen and Lebed, Phys. Rev. D 67, 096008 (2003))

• The point: more SLL′SS′IJ amplitudes than τKK̃K̃′LL′ amplitudes

1. linear relations among scattering amplitudes

2. multiplets of baryon resonances with degenerate mass and width

pole in SLL′SS′IJ → pole in τKK̃K̃′LL′ → pole in other SLL′SS′IJ ’s

• poles/resonant poles depend only on K
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Partial-wave amplitudes for positive-parity N1/2 resonances in multipion

processes (the πN final state is included for comparison). Expansions are given

in terms of K amplitudes.
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Partial-wave amplitudes for negative-parity N1/2 resonances in multipion

processes (the πN final state is included for comparison). Expansions are given

in terms of K amplitudes.

State Poles Partial Wave, K-Amplitudes
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Phenomenological Results

1. Consider only 3- or 4-star resonances as classified by the PDG

2. Association of resonances to poles labeled by K (determined by

decay channels that occur prominently versus those that are absent

or weak) seem robust, eq.:

(a) πN →ηN contains a single K amplitude [with K =L]

(b) mixed partial wave πN(L)→ π∆(L′) contains a single K

amplitude [with K = 1
2
(L+L′)]

3. Prediction of the ratio of BRs between two decay channels is not

always in accord with experiment, eq.: the ratios of πN to π∆ BR’s

at leading [O(N0
c )] order

4. But can easily be explained by 1/Nc corrections

(see Cohen, Dakin, Nellore and Lebed in PRD 69, 056001 (2004)

next-to-leading order amplitude relations for πN to π∆)
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Difficulties

1. Overall analysis does not yet include 1/Nc corrections: impossible to

draw any conclusion from such mountain of information

2. Mesons involved (π, η, ρ and ω) in these scatterings are widely

different:

• mass: 140 MeV → 783 MeV, compensated in phase space using

simple two-body decay formula

• π and η: Pseudo-Nambu-Goldstone boson of spontaneous χSB

ρ and ω: vector mesons with masses set by QCD scale

3. No chiral symmetry analysis

4. Data (PDG) is filled with internal contradictions: another reason we

did not include 1/Nc correction
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The following is example analysis for one channel:

N+
1/2 (P11): N(1440) (the Roper) and N(1710)

• Our calculation →two poles: K =0 and K =1

• N(1440) has a very small, (0±1)%, ηN BR

• N(1710) has a small but nonnegligible ηN BR, (6.2 ± 1.0)%

• Comparing this to our tabulated result suggests that the Roper is a

K =0 pole and the N(1710) is a K =1 pole

• Agrees well with the Roper as a radial excitation of ground-state N ,

which is a (nonresonant) K =0 state

• But leading-order prediction of πN →πN to πN →π∆ BR’s does

not agree well with experiment

• As mentioned above, this discrepancy can be cured by

1/Nc-suppressed amplitudes
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Summary

1. QCD symmetry in Large Nc limit: Baryon resonances

multiplets emerge from scattering amplitudes

2. The scattering amplitude approach can be extended to include

multipion final state processes by introducing stable

intermediate stated in Large Nc limit

3. Pole determination from absence/presence of certain decay

channels is robust

4. Prediction of ratio of B.R.’s of two channels is not always

accurate but can be accommodated by including 1/Nc

correction
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N−

1/2
(S11): N(1535) and N(1650).

1. Both resonances have significant ηN BR, (53±1)% and 3–10%

2. our leading-order results predict them to be zero

3. The ηN →ηN amplitude is purely K =0 at leading order,

strongly suggesting that N(1535) is a K =0 pole that has a πN

coupling through O(1/Nc) mixing to K =1, while N(1650) is a

K =1 pole that has an ηN coupling through O(1/Nc) mixing

to K =0. Further analysis for π∆ and ρN channels supports

this assignment. The K =1 π∆ mixed partial wave SD11 has a

BR of < 1% for N(1535) but 1–7% for N(1650). Moreover, the

ρ and ω couplings are purely K =1 at leading order, while the

N(1535) has a ρN BR of < 4%, the N(1650) has 4–12%

(although available phase space may be an important factor for

these cases)
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