Beyond the Born Approximation: A Precise Comparison of Positron-Proton and Electron-Proton Elastic Scattering in CLAS

> Jeff Lachniet Old Dominion University

for the PR-07-005 collaboration

Exclusive Reactions at High Momentum Transfer May 23, 2007

J.Arrington*, L. El Fassi, K. Hafidi, R.J. Holt, P.E. Reimer Argonne National Lab F. Klein, D. Sober The Catholic University of America K. Joo*, M. Ungaro University of Connecticut B. Raue*, W. Boeglin, M. Moteabbed Florida International University A. Afanasev^{*}, W. K. Brooks^{*}, V. D. Burkert, A. Deur, L. Elouadrhiri D. W. Higinbotham, B. A. Mecking, W. Melnitchouk Jefferson Lab J. Lachniet, M. Niroula, L. B. Weinstein^{*}, G. E. Dodge, C. E. Hyde-Wright, H. Juengst Old Dominion University X. Zheng University of Virginia

The Proton Charge Form Factor

 G_{E} contribution to cross section is small (~5%). 2 γ exchange is the leading candidate to explain discrepancy.

How to measure TPE:

compare electron and positron elastic scattering on the proton

$$\begin{aligned} \sigma(e^{\pm}) &\propto |A_{Born} + A_{2\gamma} + \dots|^2 \\ \sigma(e^{\pm}) &\propto |A_{Born}|^2 \pm 2A_{Born} Re(A_{2\gamma}) \end{aligned}$$

$$R = \frac{\sigma(e^+)}{\sigma(e^-)} \approx 1 - \frac{4Re(A_{2\gamma})}{A_{Born}}$$

R measures the real part of the two-photon amplitude

Experimental Technique

Making Positrons in Hall B

- 1. Electron beam hits radiator foil, producing photon beam
- 2. Photon beam strikes converter foil. e-/e+ pairs are produced.
- 3. Magnetic chicane:
 - a) separates lepton beams
 - b) blocks photon beam
 - c) recombines lepton beams

Experiment Features

- Identical e+/e- beams
- Continuous beam energy distribution
 - Wide Q^2 and angle (ε) coverage
- Simultaneous cross section measurements
 - Minimize systematic uncertainty
 - Allows 1% measurement of e+/e- cross section ratio
- Opposite sector trigger selects candidate elastic events.
- Overdetermined elastic kinematics provide effective background rejection and determine incident beam energy.

TPE Timeline

- Engineering test run, summer 2005: measure background rates in Hall B.
- Test run, October 2006: produce mixed lepton beam, validate simulations collect e-p and e+p data.

•Approved by PAC31 for 30 days of beam time, tentatively scheduled for late 2008.

Detailed GEANT4 simulation

GEANT4 simulation – vertex origin of hits on TOF Old (2005) Test Run

<u>Old</u>

Tagger Modifications

Analysis of Test Run Data:

Two-track events, preliminary calibration using g13 data

Cuts identifying elastic events

- Beam energy:
 - Calculate E from total momentum along beamline direction
 - Calculate E from particle angles (assume elastic scattering)

$$-\Delta E = E(P_{1z}, P_{2z}) - E(\theta_1, \theta_2)$$

- $-\Delta E = 0$ for elastic scattering
- Transverse momentum
 - Determine angle between total final state momentum and beamline direction, $\theta_{_{\rm B}}$
 - $\theta_{\rm B} = 0$ for elastic scattering
- No timing cuts

Test Run Results

- Large background sources have been identified and significantly reduced in the 2006 test run.
- Tagger beamline background has been reduced by a factor of ~20 by improved tagger construction and shielding around the tagger and tagger dump.
- Simulation reproduces data on background sources.
- e-p and e+p elastic events have been observed.

Test Run Results: Luminosity

Maximum luminosity achieved:

- 80 nA 3.3 GeV electrons
- 0.5% radiator, 5% converter
- Lepton current at target: 20 pA (80nA*0.5%*5%) Luminosity limited by R1 DC occupancy.
- Luminosity and backgrounds agree with simulations.
- Factor of ~ 20 improvement on previous test runs

Anticipated uncertainties

Summary:

- Rosenbluth and Polarization transfer experiments measure G_E that differ by a factor of ~5 at $Q^2 = 6$. Two Photon Exchange can explain the discrepancy.
- The e⁺p/e⁻p ratio is the only way to measure the real part of the TPE amplitude.
- The TPE 2006 Engineering Test Run:
 - Produced a mixed electron/positron beam
 - Validated detailed GEANT4 beamline and tagger simulation
 - Observed e⁺p and e⁻p elastic scattering events
 - PAC31 approval for 30 days of beam time

Backup Slides

The Formalism

General 1- and 2-photon exchange amplitude

$$A = \frac{e^2}{Q^2} \bar{u}(k') \gamma_{\mu} u(k)$$

2: $\times \bar{u}(p') \left[\tilde{G}_m \gamma^{\mu} - \tilde{F}_2 \frac{P^{\mu}}{M} + \tilde{F}_3 \frac{\gamma \cdot K P^{\mu}}{M^2} \right]$
1: $\times \bar{u}(p') \left[G_m \gamma^{\mu} - F_2 \frac{P^{\mu}}{M} + \right]$

General 1- and 2-photon exchange cross section

1:
$$\frac{d\sigma}{d\Omega} \propto [\tau G_m^2 + \epsilon G_E^2]$$

2: $\frac{d\sigma}{d\Omega} \propto [\tau \tilde{G}_m^2 + \epsilon \tilde{G}_E^2 + 2\epsilon(\tau |\tilde{G}_m| + |\tilde{G}_E \tilde{G}_m|)Y_{2\gamma}]$
 $Y_{2\gamma} \propto \mathcal{R}\left(\frac{\tilde{F}_3}{|\tilde{G}_m|}\right)$

Thus we have

- Another ε dependent term
- Modified G_E and G_M

Guichon and Vanderhaegen, PRL 91 (03) 142303

Phenomenology

Adding a small (few %), epsilon-dependent term to the cross section will

•Not change the polarization-transfer results

•Drastically change the Rosenbluth results

Existing e+/e- cross section ratios (Q2 > 1)

Data: Mar et al, PRL 21 (1968) 482

Doesn't constrain much

Opposite sector trigger

Allowed opposite sector paddle correlations, $I_{torus} = 1250A$

Opposite sector trigger kinematic coverage

Chicane-related background: Region I occupancy increases

Online vertex reconstruction (6 superlayer tracks)

Track Vertex (cm)

before decreasing collimator size and adding shielding

after improvements

We see positron and electron beams

- •Block one lepton beam
- •Scan chicane dipoles 1&3
- •Watch the beam move

- •Block the other beam
- •Scan the chicane
- •Watch the beam move

Beam Position Monitor (before target)

Improved shielding and collimation at chicane exit

How to achieve proposal luminosity

- Proposal lepton current at target: 500 pA
- Test run achieved 4% of proposal luminosity <u>Improvements</u>:
- Decrease beam-pipe scattering (factor of 6)
 - Rebuild heat exchanger and/or
 - Improve collimation of lepton beams
 - We know how to make this improvement
- Further simulations to improve shielding
 - Tagger and dump (factor of 2)
 - Upstream collimator (factor of 1.5 to 2)
 - Shield wall at torus cryo-ring
 - Intra-chicane shielding
 - We have the simulation tools to do this

Anticipated running conditions and beamtime request

Item	Value
Primary electron beam energy	$5.7~{ m GeV}$
Primary electron beam current	$0.5 \ \mu A$
Radiator thickness	$1\% X_o$
Converter thickness	$5\% X_o$
Cryogenic hydrogen target length	40 cm
Torus current	1000 A
PAC days for data acquisition	27
Additional days for flux measurement and torus polarity changes	3
Additional days for commissioning of all devices	5
Total PAC days requested	35

Luminosity Summary

Item	PAC 26	Test Run	Widen cryo-	further sims
	proposed	achieved	apertures	and shielding
Primary electron beam energy (GeV)	5.7	3.3	5.7	5.7
Primary electron beam current (μ A)	1.0	0.08	0.24	0.5
Radiator thickness $(\% X_o)$	5	0.5	0.5	1.0
Photon collimator aperture (mm)	2	12.7	12.7	12.7
Converter thickness $(\% X_o)$	2	5	5	5
Cryogenic hydrogen target length (cm)	20	20	40	40
Luminosity (fraction of PAC 26 proposal)	1	0.04	0.24	1

Anticipated Systematic Errors

Source	Error (%)
e ⁺ /e ⁻ flux differences	0.2
Proton acceptance differences	0
e ⁺ /e ⁻ momentum measurement	0.1
e^+/e^- geometrical acceptance differences	< 1
e ⁺ /e ⁻ detector efficiency differences	0.1
inelastic contamination	0.1
Total	< 1