

Hard-exclusive processes and

Transition Distribution Amplitudes

Exclusive'07 May 21-24 2007

JLab, USA

Jean-Philippe LANSBERG CPhT, École Polytechnique

in collaboration with B. Pire and L. Szymanowski

Reminder on Generalised Parton Distributions

Mesons Production

→ Factorisation between the hard part (perturbatively calculable) and the soft part (non-perturbative) demonstrated for

$$Q^2 \rightarrow \infty$$
, $x_B = \frac{Q^2}{Q^2 + W^2}$ fixed and $t \ll$ fixed

TDAs : transition distribution amplitudes

B. Pire, L. Szymanowski, PRD 71 :111501,2005; PLB 622 :83,2005.

 \Rightarrow For $u \ll$ DVCS, the non-perturbative part does not describe anymore a $H \rightarrow H$ transition, but rather

a hadron-photon or baryon-meson transition.

TDAs : transition distribution amplitudes

B. Pire, L. Szymanowski, PRD 71 :111501,2005; PLB 622 :83,2005.

 \Rightarrow For $u \ll$ DVCS, the non-perturbative part does not describe anymore a $H \rightarrow H$ transition, but rather

a hadron-photon or baryon-meson transition.

TDAs : transition distribution amplitudes

B. Pire, L. Szymanowski, PLB 622 :83,2005. J.P. Lansberg, B. Pire, L. Szymanowski, in preparation.

Also appear in exclusive $p\bar{p} \rightarrow \gamma^{\star}\gamma$ and $p\bar{p} \rightarrow \gamma^{\star}\pi^{0}$ reactions at $t \ll$ (GSI)

 \Rightarrow Large Q^2 would provide us with a hard scale :

 \rightarrow perturbative expansion

Interpretation of the TDAs

 \rightleftharpoons The mesonic TDAs possess an interpretation at the amplitude level and provide with information on correlations between a meson DA and a photon DA

whereas

 \rightleftharpoons The baryonic TDAs rather provide information on how one can find a meson or a photon in the baryon

TDAs vs GPDs : meson case

	GPDs	TDAs
Matrix elements	$ig\langle M(p') \Phi^{\dagger}(z)\Phi(0) M(p)ig angle$	$ig\langle \gamma(p',arepsilon) \Phi^\dagger(z) \Phi(0) M(p) ig angle$
Diagonal limit $\xi \rightarrow 0, t \rightarrow 0$	$egin{array}{l} {f GPDs} ightarrow {f PDFs} \ H^q(x,0,0) = q(x) \end{array}$	N/A
Sum rules : $\int dx$ \rightarrow local operator	$\int dx H(x,\xi,t) = F(t)$	$\int dx T(x,\xi,t) = F_{A\to B}(t)$

ightarrow In view of the sum rules, both GPDs and TDAs are such that their integral on *x* is independent of *ξ* !

→ possible modelling of the TDAs through double distributions (cf. Radyushkin) Models for the mesonic TDAs

Double distributions :

JPL, B. Pire, L. Szymanowski, PRD 73 :074014,2006. B. Tiburzi PRD 72 :094001,2005.

→ Spectral Quark Model :

W. Broniowski, E. Ruiz Arriola, PLB 649 :49,2007

- → NJL : S. Noguera *et al.*, on-going work
- BSE and DSE : used for PDFs; previous studies could be extended e.g. M.B. Hecht, Craig D. Roberts, S.M. Schmidt, PRC 63 :025213,2001
- ➡ Lattice : as for GPDs, TDA moments are certainly calculable
 e.g. QCDSF/UKQCD Collab, D. Brömmel et al., PoS LAT2005 :360,2006.

TDAs : baryonic case

B. Pire, L. Szymanowski, PLB 622 :83,2005. JPL, B. Pire, L. Szymanowski,PRD 75 :074004,2007.

 \Rightarrow Both for Baryon \rightarrow Meson and Baryon \rightarrow photon,

3 quarks should be exchanged in the *t*-channel

TDAs : baryonic case

B. Pire, L. Szymanowski, PLB 622 :83,2005. JPL, B. Pire, L. Szymanowski, PRD 75 :074004,2007.

 $\boldsymbol{\varTheta}$ Both for Baryon \rightarrow Meson and Baryon \rightarrow photon,

3 quarks should be exchanged in the *t*-channel

- → More than the two regions ERBL and DGLAP

\rightarrow $\xi\text{-independence}$ of the moments of the TDA

- → QUADRUPLE distributions : being worked out
- → Diquark picture and double distribution?

would suit some regions only?

 $\Rightarrow Closest object : Baryon Distribution Amplitude : \rightarrow SOFT LIMIT?$

 $p \rightarrow \pi$: parametrisation

 $\Rightarrow p \to \pi \text{ (at Leading twist accuracy)} \\\Rightarrow \Delta_T = 0 : 3 \text{ TDAs } (3 \times p(\uparrow) \to uud(\uparrow\uparrow\downarrow) + \pi)$

TDA

DA (Chernyak-Zhitnitsky)

 $\begin{aligned} 4\langle \pi^{0} | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p \rangle \propto & 4\langle 0 | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p \rangle \propto \\ & \left[V^{\pi^{0}}_{1}(x_{i},\xi,\Delta^{2}) (\not p \ C)_{\alpha\beta}(N)_{\gamma} + & \left[V(x_{i}) (\not p \ C)_{\alpha\beta}(\gamma^{5}N)_{\gamma} + \right. \right. \\ & \left. A^{\pi^{0}}_{1}(x_{i},\xi,\Delta^{2}) (\not p \ \gamma^{5}C)_{\alpha\beta}(\gamma^{5}N)_{\gamma} + & A(x_{i}) (\not p \ \gamma^{5}C)_{\alpha\beta}N_{\gamma} + \\ & \left. T^{\pi^{0}}_{1}(x_{i},\xi,\Delta^{2}) (\sigma_{\rho p} C)_{\alpha\beta}(\gamma^{\rho}N)_{\gamma} \right] & T(x_{i}) (i\sigma_{\rho p} \ C)_{\alpha\beta}(\gamma^{\rho}\gamma^{5}N)_{\gamma} \end{aligned} \end{aligned}$

 $p \rightarrow \pi$: parametrisation

 $\Rightarrow p \to \pi \text{ (at Leading twist accuracy)} \\\Rightarrow \Delta_T = 0 : 3 \text{ TDAs } (3 \times p(\uparrow) \to uud(\uparrow\uparrow\downarrow) + \pi)$

TDA

DA (Chernyak-Zhitnitsky)

 $\begin{aligned} 4\langle \pi^{0} | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p \rangle \propto & 4\langle 0 | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p \rangle \propto \\ & \left[V^{\pi^{0}}_{1}(x_{i},\xi,\Delta^{2}) (\not p \ C)_{\alpha\beta}(N)_{\gamma} + & \left[V(x_{i}) (\not p C)_{\alpha\beta}(\gamma^{5}N)_{\gamma} + \right. \right. \\ & \left. A^{\pi^{0}}_{1}(x_{i},\xi,\Delta^{2}) (\not p \ \gamma^{5}C)_{\alpha\beta}(\gamma^{5}N)_{\gamma} + & A(x_{i}) (\not p \gamma^{5}C)_{\alpha\beta}N_{\gamma} + \right. \\ & \left. T^{\pi^{0}}_{1}(x_{i},\xi,\Delta^{2}) (\sigma_{\rho p}C)_{\alpha\beta}(\gamma^{\rho}N)_{\gamma} \right] & T(x_{i}) (i\sigma_{\rho p} C)_{\alpha\beta}(\gamma^{\rho}\gamma^{5}N)_{\gamma} \end{aligned}$

 $\Rightarrow \Delta_T \neq 0 : 8 \text{ TDAs } (\frac{1}{2} \times 2 \times (2 \times 2 \times 2) \times 1)$

$$4\langle \pi^{0}(p_{\pi})| \epsilon^{ijk} u_{\alpha}^{i}(z_{1}n) u_{\beta}^{j}(z_{2}n) d_{\gamma}^{k}(z_{3}n) | p(p_{1},s) \rangle = \frac{if_{N}}{f_{\pi}} \times \left[V_{1}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p C)_{\alpha\beta}(N^{+})_{\gamma} + V_{2}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p C)_{\alpha\beta}(A_{T}N^{+})_{\gamma} + A_{1}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p \gamma^{5}C)_{\alpha\beta}(\gamma^{5}N^{+})_{\gamma} + A_{2}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p \gamma^{5}C)_{\alpha\beta}(\gamma^{5}A_{T}N^{+})_{\gamma} + T_{1}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{p\mu}C)_{\alpha\beta}(\gamma^{\mu}N^{+})_{\gamma} + T_{2}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{p\Delta_{T}}C)_{\alpha\beta}(N^{+})_{\gamma} + T_{3}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{p\mu}C)_{\alpha\beta}(\sigma^{\mu\Delta_{T}}N^{+})_{\gamma} + T_{4}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{p\Delta_{T}}C)_{\alpha\beta}(A_{T}N^{+})_{\gamma} \right]$$

Soft pion limit for proton to pion TDAs

 \implies soft pion limit : $\xi \rightarrow 1 \& \Delta_T \rightarrow 0 \Rightarrow P \rightarrow p$

$$\begin{aligned} \langle \pi^{a}(k) | \mathcal{O} | p(p,s) \rangle &= -\frac{i}{f_{\pi}} \langle 0 | [Q_{5}^{a}, \mathcal{O}] | p(p,s) \rangle \\ &+ \frac{ig_{A}}{4f_{\pi}p \cdot k} \sum_{s'} \bar{u}(p,s') \not k \gamma_{5} \tau^{a} u(p,s) \langle 0 | \mathcal{O} | p(p,s') \rangle \end{aligned}$$

→ Using $[Q_5^b, \psi] = -\frac{\tau^b}{2}\gamma^5\psi$, the baryonic DAs appear and we get the following limiting values :

$$V_{1}^{\pi^{0}}(2x_{1}, 2x_{2}, 2x_{3}, \xi \to 1) \to V(x_{1}, x_{2}, x_{3})$$

$$A_{1}^{\pi^{0}}(2x_{1}, 2x_{2}, 2x_{3}, \xi \to 1) \to A(x_{1}, x_{2}, x_{3})$$

$$T_{1}^{\pi^{0}}(2x_{1}, 2x_{2}, 2x_{3}, \xi \to 1) \to \mathbf{3}T(x_{1}, x_{2}, x_{3})$$

 \Rightarrow Same relations obtained for the proton-pion DAs $\langle 0|\mathcal{O}|\pi(k)p(p,s)\rangle$

V.M Braun et al. PRD75 :014021,2007

Application to backward electroproduction of a pion

JPL, B. Pire, L. Szymanowski, PRD 75 :074004, 2007.

 \rightarrow First evaluation : valid at large ξ

i.e. small pion energy

- \rightarrow TDAs extrapolated from their limiting value at $\xi = 1$ ($E_{\pi} \rightarrow 0$)
- \rightarrow DGLAP contribution neglected : safe for large ξ

J-Ph. LANSBERG, Ecole Polytechnique

dominance of perturbative mechanism over Feynman one?

- Late scaling for proton Form Factors does not imply late scaling for other channels
- ⇒ The Asymptotic DAs, $\phi_N = 120x_1x_2x_3$, lead to vanishing $G^p_M(Q^2)$ at the leading twist accuracy

This is **not** the case for other amplitudes

- ⇒ The Feynman mechanism seems to be important for $G_M^p(Q^2)$ it does not imply that it is so for other amplitudes
- → Only experiments can tell

Application to backward electroproduction of a pion

JPL, B. Pire, L. Szymanowski, PRD 75 :074004, 2007.

→ The (leading-twist) amplitude reads :

→ Data exist (at least) from JLab

→ We need more information about the TDAs

Application to proton-antiproton annihilations

JPL, B. Pire, L. Szymanowski, in preparation

- $\Rightarrow \bar{p}p \rightarrow \gamma^{\star}\pi^{0}$ can be studied by PANDA
- → Same TDAs as for backward electroproduction

In the GPD case, after crossing, we have to deal with GDAs

Future application to charmonium production

 \rightarrow this process is used to search for new charmonium states (h_c ,...)

- → will be extensively studied at GSI
- → For now, comparisons are possible with previous calculations Soft pion limit м.к. Gaillard, et al., PLB 110 :489,1982.

T.Barnes, X.Li, PRD 75 :054018,2007

Gavela, King, Sachrajda, Martinelli,...

a lattice computation of proton decay amplitudes

Nucl.Phys.B312 :269,1989

→ Calculation of the matrix elements for the GUT decays $p \to \pi^0 e^+$ $p \to \pi^+ \overline{\nu}$ $p \to K^0 + lepton$

Evaluation of the two matrix elements

 $\epsilon^{ijk} \langle \pi^0 | (u^i C d^j) u^k_{\gamma} | P \rangle = A_1 N_{\gamma} \quad \epsilon^{ijk} \langle \pi^0 | (u^i C \gamma_5 d^j) (\gamma_5 u^k)_{\gamma} | P \rangle = A_2 N_{\gamma}$

Update of this study would be very useful
 would fix the normalisation of the TDAs via Sum Rules
 would give information on their *t*-dependence

Conclusions and outlooks

Model-independent predictions : baryon case

→ Scaling law for the amplitude :

$$\mathcal{M}(Q^2) \propto rac{lpha_s^2(Q^2)}{Q^4}$$

 \rightarrow Approximate Q^2 -independence of the ratios

$$\frac{\mathcal{M}(\gamma^* p \to p\pi)}{\mathcal{M}(\gamma^* p \to p\gamma)}, \quad \frac{\mathcal{M}(\gamma^* p \to p\gamma)}{\mathcal{M}(\gamma^* p \to p)} \text{ and } \frac{\frac{d\sigma(p\bar{p} \to \ell^+ \ell^- \pi^0)}{dQ^2}}{\frac{d\sigma(p\bar{p} \to \ell^+ \ell^-)}{dQ^2}}$$

→ Dominance of γ_T^* emission in $p\bar{p} \to \gamma^* \pi^0 \to \ell^+ \ell^- \pi^0$ Dilepton angular dependence : $1 + \cos^2 \theta$

Quantitative predictions require models

Meson case : double distribution : ok; models used for GPDs should be suitable two already used

→ Baryon case :

4-ple distribution : on-going work...

- ➡ Lattice computations can play a key role
- Data needed to test the picture and to extract physical information
- → …expected from
- → JLab : backward electroproduction of mesons and backward DVCS
- \implies GSI : $p\bar{p} \rightarrow \gamma^{\star}\pi^{0}$, $p\bar{p} \rightarrow J/\psi\pi^{0}$, $p\bar{p} \rightarrow \gamma^{\star}\gamma$, ...
- Hermes (DVCS on pion)
- \implies *B*-factories ($\gamma^* \gamma \rightarrow MM$) data extraction possible

D. Amrath, M. Diehl, JPL, in preparation

- \Rightarrow To be analysed by HERMES through : $ep \rightarrow e'\gamma \pi^+ n$
 - \blacksquare Non-trivial kinematics; DVCS subset of $2 \rightarrow 4$ process
 - → Cannot trivially distinguish between the small t (GPD) and small u (TDA) regions in the LAB frame

