Deeply Virtual Compton Scattering on the neutron

Exclusive Reactions at High Momentum Transfer

May 21st 2007

Deeply Virtual Compton Scattering

GPDs give an access to quark angular momentum (Ji's sum rule)

$$J_{q} = \frac{1}{2}\Delta\Sigma_{q} + L_{q} = \frac{1}{2}\int_{-1}^{1} x dx \Big[H^{q}(x,\xi,0) + \frac{E^{q}(x,\xi,0)}{\downarrow} \Big]$$

less constrained GPD \leftarrow No link to DIS

DVCS is the simplest hard exclusive process involving GPDs

Factorization theorem in the Bjorken regime

 $Q^2 = -q^2 = -(k-k')^2 >> M^2$ $t = (p - p')^2 = \Delta^2 << Q^2$

Non perturbative description by GPDs

DVCS and Bethe-Heitler

Neutron Target

Model: (Goeke, Polyakov and Vanderhaeghen)

Target	${\cal H}$	$\mathcal{ ilde{H}}$	E
neutron	0.81	-0.07	1.73

$$Q^{2} = 2 \text{ GeV}^{2}$$
$$x_{B} = 0.3$$
$$-t = 0.3 \text{ GeV}^{2}$$

$$\Im(C^{I}) = F_{1}(t) \cdot \mathcal{H} + \frac{x_{B}}{2 - x_{B}} \cdot (F_{1}(t) + F_{2}(t)) \cdot \tilde{\mathcal{H}} - \frac{t}{4M^{2}} F_{2}(t) \cdot \mathcal{E}$$

$$\boxed{-t \quad F_{2}^{n}(t) \quad F_{1}^{n}(t) \quad (F_{1}^{n}(t) + F_{2}^{n}(t)) \cdot x_{B}/(2 - x_{B})}_{0.3 \quad -0.91 \quad -0.04 \quad -0.17 \quad -0.07}$$

$$\Im(C^{I}) = F_{1}(t) \cdot \mathcal{H} + \frac{x_{B}}{2 - x_{B}} \cdot (F_{1}(t) + F_{2}(t)) \cdot \tilde{\mathcal{H}} - \frac{t}{4M^{2}} F_{2}(t) \cdot \mathcal{E}$$

$$\Im(C^{I}) = -0.03 + 0.01 - 0.13$$

1

1

n-DVCS experiment

An **exploratory** experiment was performed at JLab Hall A on hydrogen target and deuterium target with high luminosity $(4.10^{37} \text{ cm}^{-2} \text{ s}^{-1})$ and exclusivity.

Goal : Measure the n-DVCS polarized cross-section difference which is mostly sensitive to GPD E (less constrained!)

E03-106 (n-DVCS) followed directly E00-110 (p-DVCS) which shows strong indications of handbag dominance at Q² about 2 GeV². (C. Muñoz-Camacho et al., PRL 97 (2006) 262002.)

х _{вј} =0.364	s (GeV²)	Q² (GeV²)	P _e (Gev/c)	Θ _e (deg)	-Θ _{γ*} (deg)	$\int L dt$ (fb ⁻¹)
Hydrogen	4.22	1.91	2.95	19.32	18.25	4365
Deuterium	4.22	1.91	2.95	19.32	18.25	24000

Experimental apparatus

Electromagnetic Calorimeter

Analysis method $\rightarrow e \gamma X$ e D (target mass = M_N^2) Nb of counts 80000 $M_x^2 \text{ cut} = (M_N + M_{\pi})^2$ 70000 60000 p-DVCS and 50000 n-DVCS Contamination by 40000 M_N^2 $eD \rightarrow e\pi^0 X \rightarrow e\gamma X$ d-DVCS 30000 $M_{\rm N}^2 + t/2$ N + mesons (Resonant or not) 20000 accidentals 10000 °ò 0.5 1.5 2 2.5 3 3.5 M_X² (GeV²)

Helicity signal and exclusivity

After :

-Normalizing H_2 and D_2 data to the same luminosity

-Adding Fermi momentum to H_2 data

2 principle sources of systematic errors :

-The contamination of π^0 electroproduction on the neutron (and deuteron).

- The uncertainty on the relative calibration between H_2 and D_2 data

Extraction of observables

$$\frac{1}{2} \left[\frac{d\bar{\sigma}}{dQ^{2}dx_{B}d\Delta^{2}d\varphi_{e}d\varphi_{\gamma\gamma}} - \frac{d\bar{\sigma}}{dQ^{2}dx_{B}d\Delta^{2}d\varphi_{e}d\varphi_{\gamma\gamma}} \right] = \frac{\Gamma_{n}(x_{B},\varphi_{e},\Delta^{2},\varphi) \cdot \Im\left(C_{n}^{l-\exp}\right) \sin \varphi + \Gamma_{d}(x_{B},\varphi_{e},\Delta^{2},\varphi) \cdot \Im\left(C_{d}^{l-\exp}\right) \sin \varphi}{\Lambda \cdot V. \text{ Belitsky, D. Muller, A. Kirchner, Nucl. Phys. B629, 323 (2002).}$$

$$\Delta N^{Exp}(i_{e}) = N_{i_{e}}^{+} - N_{i_{e}}^{-} \qquad \text{with} \quad i_{e} = 20 \otimes 12 \otimes 7 \text{ bins in } \left(M_{X}^{2},\varphi,t\right) \\ \Delta N^{MC}(i_{e}) = L \left[\Im\left(C_{n}^{l-\exp}\right)\int_{x \in i_{e}}\Gamma_{n} \cdot \sin \varphi \otimes Acc + \Im\left(C_{d}^{l-\exp}\right)\int_{x \in i_{e}}\Gamma_{d} \cdot \sin \varphi \otimes Acc \right] \\ \text{Luminosity} \qquad MC \text{ sampling} \qquad MC \text{ sampling} \qquad MC \text{ sampling} \qquad MC \text{ sampling}$$

MC includes real radiative corrections (external+internal)

Extraction results

PRELIMINARY d-DVCS extraction results Im(C^L)^{exp} 6 F. Cano & B. Pire calculation Eur. Phys. J. A19, 423 (2004). 2 0 -2 -4 -0.35 -0.3 -0.25 -0.15 -0.5 -0.45 -0.4 -0.2 -0.1 t (GeV²) Deuteron moments compatible with zero at large -t

Exploration of small –t regions in future experiments is interesting

Extraction results

PRELIMINARY n-DVCS extraction results Im(C^L)^{exp} 3 VGG Code : M. Vanderhaeghen, P. Guichon and M. Guidal 2 J_u=-0.4 J_d=-0.6 J_u=0.3 J_d=0.2 0 J_u=0.6 -1 J_=0.8 -2 GPD model : LO/Regge/D-term=0 Goeke et al., Prog. Part. Nucl. Phys 47 (2001), 401. -3 -4 -0.2 -0.35 -0.45-0.4 -0.3 -0.25 -0.15 -0.5 -0.1 t (GeV²) Neutron contribution is small and compatible with zero Results can constrain GPD models (and therefore GPD E)

n-DVCS experiment results

Summary and conclusion

Our experiment is exploratory and is dedicated to n-DVCS. n-DVCS and d-DVCS contributions are obtained after a subtraction of Hydrogen data from Deuterium data (no recoil detectors needed).

n-DVCS and d-DVCS polarized cross-sections difference are compatible with zero.

Neutron results can constrain GPD models (GPD E parametrization)

Neutron has a different flavor sensitivity to GPD E than transversally polarized proton.

Neutron experiments are mandatory complements to proton ones.

Re(DVCS) from unpolarized cross-section should be measured.

Analysis method

Double coincidence analysis

Helicity signal and exclusivity

After :

-Normalizing H_2 and D_2 data to the same luminosity

-Adding Fermi momentum to H2 data

2 principle sources of systematic errors :

-The contamination of π^0 electroproduction on the neutron (and deuteron).

The uncertainty on the relative calibration between
H2 and D2 data

π^0 contamination subtraction

Subtraction of π^0 contamination (1γ in the calorimeter) is obtained from a phase space simulation which weight is adjusted to the experimental π^0 cross section (2γ in the calorimeter).

π^0 contamination subtraction

Unfortunately, the high trigger threshold during **Deuterium** runs did not allow to record **all** <u>exclusive</u> π^0 <u>events</u> (M_x²<1.15 GeV²)

Adtually covering to the procedure of π^0 contamination subtraction, we must have :

 $\sigma(ed\sigma(en\pi^{0}Xe)\pi^{0}n) = 0.950 \text{ s} 0.06 \text{ with M}_{X}^{2} < 1.15 \text{ GeV}_{2}^{2} \text{ comparing two samples of } \sigma(ep\sigma(ep\pi^{0}Xe)\pi^{0}p)$

Exclusive π^0 asymmetry

Well known from H₂ data

$sin(\phi)$ and $sin(2\phi)$ moments

Results are coherent with the fit of a single $sin(\varphi)$ contribution

Test of the handbag dominance : E00-110

p-DVCS experiment results C. Muňoz-Camacho *et al.,* to appear in PRL (2007)

Twist-2 contribution dominates the total cross-section and the cross-section difference.

No Q² dependence of twist-2 and twist-3 terms

VGG parametrisation of GPDs

for GPD *E*, the spin-flip parton densities is used : $e_q(\beta)$

Modelled using J_u and J_d as free parameters

n-DVCS polarized cross-section difference

d-DVCS polarized cross-section difference

π^0 electroproduction on the neutron

Pierre Guichon, private communication (2006)

Amplitude of pion electroproduction :

$$T(N,\alpha) = \delta(\alpha,3)T^{+} + \tau_{N}^{\alpha}T^{0} + i\varepsilon_{3\alpha\beta}\tau^{\beta}T$$

$$\downarrow$$
nucleon isospin matrix

 α is the pion isospin

 $\Rightarrow \pi^0$ electroproduction amplitude (α =3) is given by :

$$T(p,3) = T^{+} + T^{0} \propto \frac{2}{3} \Delta u + \frac{1}{3} \Delta d$$

$$T(n,3) = T^{+} - T^{0} \propto \frac{1}{3} \Delta u + \frac{2}{3} \Delta d$$

$$\int \frac{T(p,3) + T(n,3)}{T(p,3)} \approx \frac{3 + 3\Delta d / \Delta u}{2 + \Delta d / \Delta u} \approx 1.15$$

Polarized parton distributions in the proton

Triple coincidence analysis

Proton Array and Tagger (hardware) work properly during the experiment, but :

Identification of n-DVCS events with the recoil detectors is **impossible** because of the high background rate.

Many Proton Array blocks contain signals on time for each event .

Accidental subtraction is made for p-DVCS events and gives stable beam spin asymmetry results. The same subtraction method gives incoherent results for neutrons.

Other major difficulties of this analysis:

proton-neutron conversion in the tagger shielding. Not enough statistics to subtract this contamination correctly

The triple coincidence statistics of n-DVCS is at least a factor 20 lower than the available statistics in the double coincidence analysis.

Triple coincidence analysis

One can **predict** for each (e,γ) event the Proton Array block where the missing nucleon is supposed to be (assuming DV/CS event)

Triple coincidence analysis

After accidentals subtraction

-proton-neutron conversion in the tagger shielding

- accidentals subtraction problem for neutrons

p-DVCS events (from LD2 target) asymmetry is stable

Calorimeter energy calibration

We have 2 independent methods to check and correct the calorimeter calibration

Calorimeter energy calibration

 2^{nd} method : Invariant mass of 2 detected photons in the calorimeter (π^0)

Differences between the results of the 2 methods introduce a systematic error of **1%** on the calorimeter calibration.