Charge Density of the Neutron

Gerald A. Miller University of Washington arXiv:0705.2409

What do form factors really measure?

What is charge density at the center of the neutron?

Neutron has no charge, but charge density need not vanish
 Is central density positive or negative?

Relativistic treatment needed Feynman graphs, Light front cloudy bag model LFCBM 2002

FIG. 11. Neutron charge density.

One gluon exchange also gives positive central charge density

Enough models- Today

model independent information

Outline

Electromagnetic form factors Light cone coordinates, kinematic subgroup GPDs + Bit of math **Two dimensional** Fourier transf. of F_1 gives $\rho(b)$, Soper '77 Data analysis, Interpretation

Definitions

$$\langle p', \lambda' | J^{\mu}(0) | p, \lambda \rangle = \bar{u}(p', \lambda') \left(\gamma^{\mu} F_1(Q^2) + i \frac{\sigma^{\mu\alpha}}{2M} q_{\alpha} F_2(Q^2) \right) u(p, \lambda)$$

$$G_E(Q^2) \equiv F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2), \ G_M(Q^2) \equiv F_1(Q^2) + F_2(Q^2)$$

Old Interpretation- Breit frame

$$\vec{p}' = -\vec{p}$$

G_E is helicity flip matrix element of J⁰

Interpretation of Sachs - G_E(Q²) is Fourier transform of charge density

Correct non-relativisticaly

Non-relativistic two particle :

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, t) = e^{i\mathbf{P}\cdot\mathbf{R} - i(\frac{P^2}{2M} - \epsilon)t}\phi(\mathbf{r})$$

Relativity: $(\mathbf{r}_1, t_1), (\mathbf{r}_2, t_2) \ t_1 \neq t_2$

 $\bar{e}^{i H(t_1-t_2)}$ Interactions!

Why relativity if $Q^2 \ll M^2$

QCD- photon hits \approx massless quarks No matter how small Q² is, there is a boost correction that is $\propto Q^2$ $F_1 \sim Q^2 R_N^2 (|\psi|^2 + C/(m_q R_N)^2)$

Light cone coordinates

"Time"
$$x^+ = (ct + z)/\sqrt{2} = (x^0 + x^3)/\sqrt{2}$$

"Evolution"
$$p^- = (p^0 - p^3)/\sqrt{2}$$

"Space"
$$x^- = (ct - z)/\sqrt{2} = (x^0 - x^3)/\sqrt{2}$$
, If $x^+ = 0$, $x^- = -\sqrt{2}z$

"Momentum"
$$p^+ = (p^0 + p^3)/\sqrt{2}$$

Transverse : "Position" b "Momentum" p

Relativistic formalismkinematic subgroup of Poincare

Lorentz transformation –transverse velocity v

$$k^+ \rightarrow k^+, \mathbf{k} \rightarrow \mathbf{k} - k^+ \mathbf{v}$$

k⁻ such that k² not changed Just like non-relativistic

Generalized Parton Distribution

 $H_{q}(x,t) = \int \frac{dx^{-}}{4\pi} \langle p^{+}, p', \lambda | \bar{q}(-\frac{x^{-}}{2}, 0) \gamma^{+} q(\frac{x^{-}}{2}, 0) | p^{+}, p, \lambda \rangle e^{ixp^{+}x^{-}}$

 $H_q(x,\xi=0,t) \equiv H_q(x,t)$

 $A^+=0, t=(p-p')^2 = -Q^2 = -(p'-p)^2$

$$H_q(x,t) = \int \frac{dx^-}{4\pi} \langle p^+, \mathbf{p}', \lambda | \bar{q}(-\frac{x^-}{2}, 0) \gamma^+ q(\frac{x^-}{2}, 0) | p^+, \mathbf{p}, \lambda \rangle e^{ixp^+x^-}$$

$$H_{q}(\mathbf{x},0) = q(\mathbf{x}) \quad F_{1}(t) = \sum_{q} e_{q} \int dx H_{q}(x,t)$$

$$|p^{+}, \mathbf{R} = \mathbf{0}, \lambda \rangle \equiv \mathcal{N} \int \frac{d^{2}\mathbf{p}}{(2\pi)^{2}} |p^{+}, \mathbf{p}, \lambda \rangle$$

$$\hat{O}_q(x,\mathbf{b}) \equiv \int \frac{dx^-}{4\pi} q_+^{\dagger} \left(-\frac{x^-}{2},\mathbf{b}\right) q_+ \left(\frac{x^-}{2},\mathbf{b}\right) e^{ixp^+x^-}$$

$q(x, \mathbf{b}) = \int \frac{a \ q}{(2\pi)^2} e^{i \mathbf{q} \cdot \mathbf{b}} H_q(x, t = -\mathbf{q}^2),$ Integrate on x, Left: sets $x^-=0 \longrightarrow q_+^{\dagger}(0,b) q_+(0,b)$ DENSITY; right 2 Dim. Fourier T. of F₁

$$q(x, \mathbf{b}) \equiv \langle p^+, \mathbf{R} = 0, \lambda | O_q(x, \mathbf{b}) | p^+, \mathbf{R} = 0, \lambda \rangle.$$

Burkardt

$$q(x, \mathbf{b}) \equiv \left\langle p^+, \mathbf{R} = \mathbf{0}, \lambda \right| \hat{O}_q(x, \mathbf{b}) \left| p^+, \mathbf{R} = \mathbf{0}, \lambda \right\rangle.$$

$$\hat{U}_{q}(x,\mathbf{b}) = \int \frac{1}{4\pi} \langle p^{+}, \mathbf{p}, \mathbf{A} | q(-\frac{1}{2}, \mathbf{0}) \gamma^{+} q(-\frac{1}{2}, \mathbf{0}) | p^{+}, \mathbf{p}, \mathbf{A} \rangle e^{-x}$$
$$\hat{O}_{q}(x, \mathbf{b}) \equiv \int \frac{dx^{-}}{4\pi} q_{+}^{\dagger} \left(-\frac{x^{-}}{2}, \mathbf{b}\right) q_{+} \left(\frac{x^{-}}{2}, \mathbf{b}\right) e^{ixp^{+}x^{-}}$$

$$H_q(x,t) = \int \frac{dx^-}{4\pi} \langle p^+, \mathbf{p}', \lambda | \bar{q}(-\frac{x^-}{2}, 0) \gamma^+ q(\frac{x^-}{2}, 0) | p^+, \mathbf{p}, \lambda \rangle e^{ixp^+x^-}$$

RESULT

$$o(b) \equiv \sum_{q} e_q \int dx \ q(x, \mathbf{b}) = \int \underline{d^2 q} F_1(Q^2 = \mathbf{q}^2) e^{i \mathbf{q} \cdot \mathbf{b}}$$

Density Density Soper '77

$$\rho(b) = \int_0^\infty \frac{dQ Q}{2\pi} J_0(Qb) \frac{G_E(Q^2) + \tau G_M(Q^2)}{1 + \tau}$$

$\tau = Q^2 / 4M^2$

PHYSICAL REVIEW C 70, 068202 (2004)

Simple parametrization of nucleon form factors

J. J. Kelly

A New Parameterization of the Nucleon Elastic Form Factors

R. Bradford,^aA. Bodek,^a H. Budd,^a and J. Arrington^b

hep-ex/0602017

Results

Neutron Interpretation

? π^- at short distance ?

Neutron Form Factors in LFCBM Miller 2002

Charge symmetry: u in proton is d in neutron, d in proton is u in neutron

$\rho_u = \rho_p - \rho_n/2$ $\rho_d = \rho_p - 2\rho_n$

?Quark interpretation?

b=0, high transverse momentum, low Bjorken x
low x, sea
u ū is suppressed by Pauli principal, Signal & Thomas

Summary

Model independent information on charge density

$$\rho(b) \equiv \sum_{q} e_q \int dx \ q(x, \mathbf{b}) = \int d^2 q F_1(Q^2 = \mathbf{q}^2) e^{i \mathbf{q} \cdot \mathbf{b}}.$$

Central charge density of neutron is negative
Pion cloud at large b