Real Compton Scattering from the Proton in the Hard Scattering Regime Alan M. Nathan a-nathan@uiuc.edu

Workshop on Exclusive Reactions at High Momentum Transfer JLab, May 21-24, 2007

I. Compton Scattering from Nucleon at Large p_{\perp}

- Factorization schemes
- Relationship to GPD's
- II. Results from JLab E99-114
 - polarization transfer observables & cross sections
 - form factors and GPD's

III. Summary & Outlook

Cross sections expected to factorize in hard scattering regime

- Hard scattering $\rightarrow p_{\perp}$ large $\rightarrow s, -t, -u \gg m^2$
- Factorization:

amplitude ~ hard \otimes soft

calculable in pQCD

nonperturbative structure process-independent Factorization schemes based on how transferred momentum shared among constituents

- ERBL factorization:
 - *3 active quarks, 2 hard gluons
 - * constituent scaling

 $d\sigma/dt = f(\theta_{\rm CM})/s^6$

- *dominates at "sufficiently high energy"
 - --but grossly underpredicts at few GeV
- handbag factorization:
 - *1 active quark, 0 hard gluons
 - * overlap of soft wave function (GPD)
 - * probably dominates at few GeV

Handbag mechanism probably dominates at few-GeV energies (Radyushkin, Kroll&Diehl, Miller)

- One active parton—rest are spectators
- Hard process $\gamma q \rightarrow \gamma q$
- Soft physics in process-independent GPD's
- Complementary to deeply virtual processes

DV: $-t/Q^2 << 1$

wide angle RCS: $Q^2/(-t) \ll 1$

• Central assumptions:

-- s,-t,-u >> m²

- -- struck quark nearly real and co-linear with proton
- Formally power correction to leading-twist -- asymptotically subdominant but ...

pQCD

Generalized Parton

Distribution

Handbag Description of RCS

Various approximations improve as s,-t,-u >> M²

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}t}\right)_{\mathrm{KN}} \left[f_{\mathrm{V}} \mathrm{R}_{\mathrm{V}}^{2}(t) + f_{A} \mathrm{R}_{\mathrm{A}}^{2}(t)\right]$$

- Scaled by Klein-Nishina (KN) from parton
- Structure contained in new form factors $R_V(t)$, $R_A(t)$

 $|R_V + - R_A|^2$:

active quark spin parallel/antiparallel to proton spin

- Kinematic factor $f_V >> f_A \Rightarrow$ cross sections mainly sensitive to R_V
- Robust prediction: $\sigma/\sigma_{KN} \sim$ s-independent at fixed t
- Corrections due to R_T, gluons, masses ... See Kroll, hep-ph/0110208

RCS and Form Factors: GPD's

Generalized Parton Distributions
(GPD's)
links among diverse processes

$$\begin{cases}
R_V(t) = \sum_{a} e_a^2 \int H_a(x,\zeta = 0,t) \frac{dx}{x} \\
F_1(t) = \sum_{a} e_a \int H_a(x,\zeta = 0,t) dx \\
q_a(x) = H_a(x,\zeta = 0,0)
\end{cases}$$

GPD	x ⁻¹ moment	x ⁰ moment	t=0 limit
$H(\mathbf{x}, \boldsymbol{\zeta}=0, \mathbf{t})$	$R_v(t)$	$F_1(t)$	$q(\mathbf{x})$
$H(x, \zeta=0, t)$	R _A (t)	G _A (t)	$\Delta q(\mathbf{x})$
$E(\mathbf{x}, \boldsymbol{\zeta}=0, \mathbf{t})$	R _T (t)	$F_2(t)$	2J(x)/x - q(x)

RCS sensitive to unskewed (ζ =0) GPD's at high –t, moderate x

Polarization observables can test reaction model, constrain form factors

Robust prediction: depends only on ratio of form factors
ERBL prediction very different ⁷

JLab E99-114: A new RCS experiment theses: A. Danagoulian, D. Hamilton, V. Mamyan

- Measure cross sections of broad kinematic range: 5 GeV²<s<11 GeV² -t < 7 GeV²

 * PRL 98, 98, 1520011—1520015 (2007)
- Measure polarization transfer at t=-4 GeV²
 * PRL 94, 242001-242005 (2005)
- Test handbag model
 - * s-independence of $\sigma\!/\!\sigma_{KN}$ @ fixed t
 - * K_{LL} close to 1
 - * Extract R_V form factor and use to constrain model for H GPD

K_{LL} measurement consistent with handbag dominance of RCS cross section

Conclusions:

--Handbag diagram dominates, not ERBL
 --R_A(t) / R_V(t) = 0.8 ± 0.1
 => struck quark carries proton spin

K_{LL} and A_{LL} can be different for constituent quarks

New experiment approved @ JLab

- * E05-01, Hall C
- * Day and Wojtsekhowski
- * Measure A_{LL} @ s=9, -t=6.4

K_{LT} measurement not precise enough to test models

$$K_{LT} \approx \frac{\uparrow \rightarrow - \downarrow \rightarrow}{\uparrow \rightarrow + \downarrow \rightarrow}$$

$$\frac{K_{LT}}{K_{LL}} \approx \frac{\sqrt{-t}}{2M} \frac{R_T}{R_V} \approx \frac{\sqrt{-t}}{2M} \frac{F_2}{F_1}$$

- R_T : hadron helicity flip
- pQCD:

-t $F_2/F_1 \sim constant$

- JLab G_{Ep} expt: - $t^{\frac{1}{2}}F_2/F_1 \sim \text{constant}$
- Does R_T/R_V behave similarly?

experimental result:

$$\frac{K_{LT}}{K_{LL}} = 0.21 \pm 0.15$$
$$\Rightarrow R_T / R_V \approx (0.5 \pm 0.4) F_2 / F_1$$

No strong conclusions

- Leading twist badly underestimates E99-114 cross sections.
- s⁻⁶ scaling at fixed θ_{CM} works poorly

s⁻⁸ scaling at fixed θ_{CM} works much better

Cross sections consistent with s⁻⁸ scaling

• scaling inconsistent with leading twist pQCD prediction

- can't be fixed with different DA
- in handbag diagram, scaling is a local property of the form factor R_V
 not fundamental to the theory

Unpolarized Cross Sections: Handbag vs. pQCD

• $d\sigma/dt \sim R_v^2/s^2$ • $R_V \sim 1/t^2$ for -t = 3-10 GeV² $\Rightarrow n \approx 6$ scaling (accidental!)

- •Asymptotically $R_V \sim 1/t^4$ $\Rightarrow n \approx 10$ scaling
 - \Rightarrow ultimately subdominant

(when?)

Thanks to P. Kroll and M. Diehl for this argument

Handbag diagram gets E99-114 cross sections about right, except for far backward angles.

Extracting $R_v(t)$ from RCS cross sections

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}t}\right)_{\mathrm{KN}} \left[f_{\mathrm{V}} \mathrm{R}_{\mathrm{V}}^{2}(t) + f_{\mathrm{A}} \mathrm{R}_{\mathrm{A}}^{2}(t)\right]$$

- Use NLO pQCD to calculate KN, f_V , f_A
- Use K_{LL} @ -t=4 GeV² to get R_A/R_V (~0.8)
- Only use data with s,-t,-u>2.5 GeV²

Results obtained for $R_V(t)$:

- $R_V \sim$ independent of s at fixed t (s,-t,-u>2.5 GeV²)
- R_V follows dipole for 2.5<-t_6.5
- $F_1/R_V \approx 0.75 \implies \langle x \rangle \approx 0.5$ if u dominates

Is there a GPD that explains both F_1 and R_V ?

$$R_V(t) = \sum_{a} e_a^2 \int H_a(x, \zeta = 0, t) \frac{dx}{x}$$
$$F_1(t) = \sum_{a} e_a \int H_a(x, \zeta = 0, t) dx$$

- Separable model: $H_a(x,0,t)=q_a(x)exp[tf_a(x)]$
- q_a(x) from various PDF parametrizations
- Diehl et al.:

* $f_a(x) = \alpha (1-x)^3 \ln(1/x) + B_a(1-x)^3 + A_a(1-x)^2$

• Guidal et al.:

* $f_a(x) = -\alpha_a(1-x)\ln(x)$

• Adjust parameters to fit F_{1p} , F_{1n}

Conclusion: R_V drops less rapidly than predicted by model for GPD based on F_1 —but not by a lot....

Summary and Conclusions

• E99-114 confirms that

handbag dominates at JLab energies

- * K_{LL}
- * Cross sections about right magnitude
- * s-independence of $\sigma\!/\sigma_{KN}$ @ fixed t
- K_{LL} close to 1 => struck quark carries p spin
- Scaling parameter n≈8
 * Not 6
- First measurement of new form factor R_V
- Model of GPD can (almost) describe both F_1 and R_V
 - * Lends credence to concept of GPD
 - * Fine tuning in progress