Inner Calorimeter in CLAS/DVCS experiment

\checkmark Motivation

- ✓ E1-DVCS run Configuration
- ✓ Inner Calorimeter Performance
- ✓ Summary

Exclusive Reactions Workshop

R. Niyazov(JLAB)

e1-dvcs run Physics Goals

> DVCS Beam Spin Asymmetry: > DVCS cross sections > Exclusive π^0 and η Beam Spin Asymmetry > Exclusive π^0 and η cross sections > $e\gamma\pi^+ (\rho^+)X$, $e\gamma\pi^0 (\rho^0)p$, $e\pi^0\pi^0p$ > Exclusive pion pair production > Semi-inclusive π^0 production

Need high precision calorimeter to detect photons at small angles

Dedicated DVCS Experiment With CLAS

CLAS+Solenoid+Inner Calorimeter

CLAS and

✓ Super-conducting solenoid magnet to shield detectors from Møller background (field=4.5 T)

✓ 2.5 cm Hydrogen target (upstream of CLAS Center -66 cm)

>Inner Calorimeter (IC)

✓424 PbWO₄ crystals, 16 cm long, 1.3x1.3 cm²

✓ High resolution calorimeter to detect photons at small angles (4-15°)

Light read-out via APDs (avalanche photo-diodes)

Low-noise fast preamplifiers

 Temperature stabilization for high precision energy measurements (< 0.1°)

✓Laser Monitoring System

CLAS + Solenoid + IC

The Superconductive Solenoid

Møller electron energy - 1-10 MeV

The e1-dvcs Run Summary

- ✓ DVCS run; 67 days (March 17-May 27, 2005)
- \checkmark E₀=5.8 GeV; Luminosity=1.7x10³⁴ cm⁻²s⁻¹
- ✓ Average Beam Polarization = 80%
- ✓ Average Beam Current 25 nA
- \checkmark Number of production triggers = 7.5x10⁹
- \checkmark 7 Tb of production data (440 runs)
- ✓ FC charge=58.9 mC

Inner Calorimeter

IC assembly/Front View

Inner Calorimeter

IC assembly/Back View

Solenoid Magnet + IC Installation

IC insertion in CLAS

Temperature Stability

π^0 Reconstruction and Calibration

Gains by fitting M_{yy}

One of the gain correction iterations

IC Calibration Results

IC Energy and Position Resolution

IC Resolution Timing

Higher the energy - better resolution and lower background

IC Monitoring

Monitor channel occupancy, ADC, TDC, cluster reconstruction

IC Monitoring

IC Scalers

Radiation Doses in IC

π^0 and η Reconstruction in IC

CLAS+IC Measurements

CLAS+IC Measurements

CLAS+IC Measurements

The Superconductive Solenoid

 \checkmark Magnetic shielding of the Møller electrons

Superconductor solenoidal magnet:

- ✓ Cu+Nb/Ti composite at 4.3 K
- \checkmark Original cryogenic system
- Additional coil to compensate_ fringe field

Average field at the target location - 4.5 T at 534 A