

High Q^2 Large Acceptance G^p_E/G^p_M Measurements Using Polarization Transfer

Lubomir Pentchev†, Charles Perdrisat†, Bogdan Wojtsekhowski‡

† The College of William and Mary,‡ Jefferson Lab

Required electron acceptance $\Omega_e = Jac \bullet \Omega_p \sim Q^2$ at fixed beam energy E

Required electron acceptance $\Omega_e = Jac \bullet \Omega_p \sim Q^2$ at fixed beam energy E

Exclusive Reactions, May 2007, JLab - p.3/11

- Low elastic cross-section, $\sigma \sim E^2/Q^{12}$
- Low analyzing power, $A_y \sim 1/P_{Lab} \sim 1/Q^2$

 $\Rightarrow \text{The overall experimental } FOM \sim \sigma A_y^2 \sim E^2/Q^{16}$ $FOM|_{14GeV^2} = \frac{1}{15}FOM|_{GEP-III}$

- Large proton momentum, $P_{Lab} \sim Q^2$
- Increased systematics due to larger precession angles, $\chi \sim \gamma_p \sim Q^2$

Analyzing Power

 $\Rightarrow A_{eff} = \int A_y dP_T \sim 1/P_{Lab} \quad \text{ for } 1.5 < P_{Lab} < 5.3 \ GeV/c \quad \text{ (PRL L.S. Azhgirei 2005)}$

Exclusive Reactions, May 2007, JLab - p.5/11

Systematics due to Spin Precession

Dispersive precession $\chi_{\theta} = \gamma(\mu_g - 1)\Delta\theta$

Non-dispersive precession $\chi_{\phi} = \gamma(\mu_g - 1)\Delta\phi$

12 GeV Measurements

"Classical" Measurements

- E.M. Calorimeter: $\sim 5\%/\sqrt{E}$ energy resolution, $\sim 2\ mrad$ angular resolution at 3.5 m
- Classical" Spectrometer (SHMS) measures p_ℓ , reduces the rates at the polarimeter, identifies elastic protons, but limits the acceptance

Trade High-resolution Low-acceptance spectrometer \rightarrow Low-resolution High-acceptance one

12 GeV Measurements

"Novel" Measurement

- E.M. Calorimeter: $\sim 5\%/\sqrt{E}$ energy resolution, $\sim 2\ mrad$ angular resolution at 3.5 m
- Classical" Spectrometer (SHMS) measures p_{ℓ} , reduces the rates at the polarimeter, identifies elastic protons, but limits the acceptance

Trade High-resolution Low-acceptance spectrometer \rightarrow Low-resolution High-acceptance one

12 GeV Measurements

"Novel" Measurement

- Magnet: views 40 cm target, field integral $\sim 3 Tm$, bends vertically $6^0 \rightarrow$ optimum precession angle of $\sim 90^0$, non-dispersive deflection $\Delta \phi < 0.15 mrad$
- Front tracking: high counting rates, 0.5 mrad angular resolution
- Rear tracking: medium counting rates, 3 mrad angular resolution, A_y^{max} at rescattering angle of $\sim 50 mrad$
- Hadron Calorimeter: allows high energy threshold for the trigger, $E_{thresh} \sim 2~GeV$

Tracking Detectors

Front: Thin Gas Electron Multiplier (GEM) chamber

- Very fast: $\sim 100~MHz/cm^2$; we need $< 1~MHz/cm^2$
- High coordinate resolution $\sim 60 70 \mu m$
- Only $40 200 mg/cm^2$ (0.15 0.7%X₀) material, reduced sensitivity to γ background
 - Stable operation; cascading for higher gains

COMPASS Triple-GEM $31x31 \ cm^2$

- Rear: Thick GEM chambers
 - Similar to GEM high rates
 - Sufficient coordinate resolution $\sim 350 \mu m$
 - 5-10x more material
- Much lower production cost

(A.Breskin et al.)

- High Q² polarization transfer measurements of the $\mu \frac{G_E^p}{G_M^p}$ require not only higher beam energies, but also much larger solid angles
- Simple (non-superconductive) magnet close to the target is adequate solution:
 - \blacksquare allows for ~ 10 larger solid angles than the "classical" spectrometers
 - accepts longer target
 - \checkmark provides enough power to precess the spin up to 90^0
 - has moderate momentum resolution, which combined with the E.M. calorimeter is sufficient to suppress the background
- Last decade progress in the tracking devices allows to handle counting rates much higher than expected in this experiment
- The proposed experiment plans to measure $\mu \frac{G_E^p}{G_M^p}$ at Q^2 values of 13 and 15 GeV^2 with 0.07 and 0.10 absolute errors in 54 days

Inelastic Background

The features of the proposed set-up:

- Proton arm:
 - Momentum resolution $\Delta p/p \approx 1\%$
- Proton angle resolution $\Delta \theta_p \approx 0.5 \ mrad$

Allows to eliminate most of the background.

The main contribution to the background comes from

Electron arm:

- Energy resolution $5\%/\sqrt{(E)}$
- Section angle resolution $\Delta heta_e pprox 2\ mradee$

- Solution Needed for the trigger: $\sim 60\%/\sqrt(E)$ energy resolution
 - Helps resolving multi tracks: $\sim 15~mm$ coordinate resolution

