

HERMES Recoil Detector

Roberto Francisco Pérez Benito

On behalf the HERMES Collaboration

Exclusive Reactions at High Momentum Transfer May 21-24, 2007 Jefferson Lab, Newport News, VA USA

Outline

- Motivation
 - □ Spin of the Nucleon
 - □ General Parton Distribution (GPD)
 - DVCS & BH
- HERMES
 - Hermes Recoil Detector
 - Design Requirement
- Recoil Detector (RD)
 - Silicon Strip Detector (SSD)
 - Scintillating Fiber Tracker (SFT)
 - Photon Detector (PD)
- Performance

Spin of the nucleon $S_z = \frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$ • $\Delta\Sigma$ Spin of quarks $\Delta\Sigma$ ~ 30% ! • ΔG Spin of gluons expected to be small • L_q Orbital angular momentum of quarks • L_{q} Orbital angular momentum of gluons **HERMES**: $\Delta\Sigma = 0.330 \pm 0.011$ (theo.) ± 0.025 (exp.) ± 0.028 (evol.) A. Airapetian et al, Phys. Rev. D75(2007)012007

How to access
$$L_q\,$$
 ?

Generalized Parton Distributions

GPDs can be accessed in Deeply Virtual Compton Scattering (DVCS)

two experimentally undistinguishable processes:

Same initial and final state

HERMES in Hamburg - Germany

HERMES is a fixed target experiment in HERA

Long. Polarized beam 27.6 GeV e^{\pm}

HERA

95 - 05 exclusivty through missing mass cut

06 - 07 Recoil detector installed to identify the recoiling proton

RD - Design Requirements

Recoil Detector

1 Tesla Superconducting Solenoid

Photon Detector

- □ <u>3</u> layers of
 - **Tungsten/Scintillator**
- PID for higher momentum
- \Box detects $\Delta^+ \rightarrow p \pi^0$

Scintillating Fiber Detector

- 2 Barrels
- 2 Parallel- and 2 Stereo-
 - Layers in each barrel
- □ 10° Stereo Angle
- Momentum reconstruction & PID

Silicon Detector

- 16 double-sides sensors perpendicular with respect to each other
- 97×97 mm² active area each
- **2 layers**
- Inside HERA vacuum
- Momentum reconstruction & PID

Target Cell

Target Cell

Target cell inside beam pipe

Silicon Strip Detector (SSD)

- 2 layers of double sided TIGRE sensors
- 16 TIGRE sensors operate in beam vacuum few cm close to the beam
- □ Size 97mmX 97mm, thickness=300µm
- **128** strips per side, perpendicular w.r.t. each other, pitch=758μm
- □ HELIX chips are ADC and running under same condition
- The high and low gain yield s from charge sharing
 - 8192 channels in total
- Proton momentum 135-500 MeV/c

Silicon Strip Detector (SSD) 2 layers of double sided TIGRE sensors

- □ 16 TIGRE sensors operate in beam vacuum few cm close to the beam
- Size 97mmX 97mm, thickness=300µm
- **128** strips per side , perpendicular w.r.t. each other, pitch=758µm
- HELIX chips are ADC and running under same condition
- The high and low gain yield s from charge sharing
 - 8192 channels in tot
- □ Proton momentum 135-500 MeV/c

Silicon Strip Detector (SSD)

- 2 layers of double sided TIGRE sensors
- 16 TIGRE sensors operate in beam vacuum few cm close to the beam
- **Size 97mmX 97mm, thickness=300**μm
- \square 128 strips per side , perpendicular w.r.t. each other, pitch=758µm
- HELIX chips are ADC and running under same condition
- The high and low gain yield s from charge sharing
 - 8192 channels in total 700

Proton momentum 135-500 MeV/c

Silicon Strip Detector (SSD) 2 layers of double sided TIGRE sensors

- 16 TIGRE sensors operate in beam vacuum few cm close to the beam
- Size 97mmX 97mm, thickness=300µm
- **128** strips per side , perpendicular w.r.t. each other, pitch=758µm
- HELIX chips are ADC and running under same condition
- The high and low gain yield s from charge sharing
 - 8192 channels in total
- Proton momentum 135-500 MeV/c

Scintillating Fiber Tracker

- 2 cylinders of 2X2 layers,
 10° stereo angle
- 1mm Kuraray fibers, mirrored ends and double cladding
- PMT Hamamatsu
 64 channels
 - 5120 channels in total
- Proton momentum
 250-1200 MeV/c

Scintillating Fiber Tracker

 Calibration data (blue LED pulser) fitted with Poisson & Gauß

Scintillating Fiber Tracker

Photon Detector 3 layers of Tungsten/Scintillator

- A layer parallel to beam line, B and C layer stereo under +45°/-45°
- Strips: 2x1x28cm³
- same PMTs as for SFT are used
- Main purpose
 - 1γ from π° decay
 - Reconstruct π° if 2 γ's detected

Photon Detector

Data-MonteCarlo comparison:

- Minimum 1 lepton track in spectrometer
- Select exactly 1 hit per layer
- □ MC and data agree

Data

Monte Carlo

Recoil Detector

Recoil detector Alignment

- **5** GeV electron test beam was used with Si Reference system
- **X/Y reconstruction < 100**μm
- Parameterizes fibers with polynoms O(4)

Recoil detector Alignment

- Six parameters (three translations and three rotations) which are common for all tracks are fitted
- Residuals and dependence of residuals on coordinates used as a tool to check alignment procedure

Si alignment respect SFT with tracks

Next step is Recoil-Hermes alignment using e-p elastic

e - p elastic scattering

- Full tracking including alignment is in production
- Efficiency of the tracking algorithm studied on MC and found to be above 98%
- Starting to study the efficiencies, residuals and ghost tracks

20M e+ 2006
13M e+ 2007
maybe 20M until July
In total 47M DIS for the unpol. run

SFT was working for large set of e- data
Si working since September 2006

Conclusion

- Recoil Detector:
 - installed January 2006
 - Fully commissioned in September 2006 and taking data until the end of HERA – July 2007

 DVCS and other hard exclusive reactions can be precisely measured with the recoil detector