High Q^2 measurement of $\mathbf{G}_M^p/\mathbf{G}_M^p$

????????

Brian Quinn / Carnegie Mellon Univ. (with Bogdan Wojtsekhowski / JLab) Exclusive Reactions Workshop May 22/07

Brian Quinn / Carnegie Mellon Univ. (with Bogdan Wojtsekhowski / JLab) Exclusive Reactions Workshop May 22/07

Brian Quinn / Carnegie Mellon Univ. (with Bogdan Wojtsekhowski / JLab) Exclusive Reactions Workshop May 22/07

Technique: Quasi-elastic scattering from the deuteron Measure: $R \equiv \frac{d(e,e'n)}{d(e,e'p)}$

$$R \approx \frac{\frac{d\sigma}{d\Omega}\Big|_n}{\frac{d\sigma}{d\Omega}\Big|_p} \rightarrow \frac{\eta \frac{\tau/\epsilon}{1+\tau} \sigma_{Mott} (G_M^n)^2}{\frac{d\sigma}{d\Omega}\Big|_p}$$

Brian Quinn / Carnegie Mellon Univ. (with Bogdan Wojtsekhowski / JLab) Exclusive Reactions Workshop May 22/07

Technique: Quasi-elastic scattering from the deuteron Measure: $R \equiv \frac{d(e,e'n)}{d(e,e'p)}$

$$R \approx \frac{\frac{d\sigma}{d\Omega}\Big|_n}{\frac{d\sigma}{d\Omega}\Big|_p} \rightarrow \frac{\eta \frac{\tau/\epsilon}{1+\tau} \sigma_{Mott} (G_M^n)^2}{\frac{d\sigma}{d\Omega}\Big|_p}$$

Calibration:

H(e,e'p)

H(γ , π^+ n)

Physics Motivation

- Probe nucleon structure
- Evolution from non-perturbative to perturbative description
- Test Lattice QCD structure predictions
- Constrain generalized parton distributions

Selected World Data

Red points: Lachniet et al. CLAS (e5) Preliminary

Kinematics

\mathbf{Q}^2	E _{beam}	$ heta_e$	$ heta_N$	E'	P_N
(GeV/c) 2	(GeV)			(GeV)	(GeV/c)
3.5	4	37.5 [°]	29.2 °	2.1	2.65
4.5	4	49.5 °	22.4 °	1.6	3.2
6	5	48.1 [°]	19.5 [°]	1.8	4.0
8	6	52. °	15.5°	1.7	5.1

Apparatus

Big Bite spectrometer

Electron arm (and π^+ for H(γ, π^+)n calibration)

Reconfigured for higher momentum running.

pprox 50 msr acceptance

<0.75 % momentum resolution

<.5 mr angular resolution

"BigHAND" Hall A *Nucleon* Detector

(neutron and proton arm)

244 scintillator bars in 7 layer with $\frac{1}{2}$ " iron converters Two veto layers with 2" lead and 1" iron shields

$$\label{eq:light} \begin{split} \mathbf{L}_{\mathrm{flight}} &= 17 \ \mathrm{m} \\ \mathrm{Time \ Resolution} &\approx 0.35 \ \mathrm{ns} \end{split}$$

Nucleon identification complicated by hadronic interactions in shielding

1′

Choose $\Delta P_x = 100$ MeV/c

95% probably postion will be shifted by less than $\Delta = \frac{\Delta P_x}{|\vec{q}|} {\rm L_{flight}}$

Deflect proton by ≈ 200 MeV/c for clean PID. $\Rightarrow \int Bdl \approx .66$ Tm

Input for rate estimates

Luminosity (electron-nucleon): $\mathcal{L}=10^{37}$ /cm 2 /s

Quasi-elastic cross sections: Scaled Dipole (${\sf G}_E^p, {\sf G}_M^p, {\sf G}_M^n$), Galster(${\sf G}_E^n$)

75% n-efficiency

80% p-efficiency

80% live-time

75% tracking efficiency

Combined BigBite/BigHAND acceptance model with 'safety' buffer at edge of BigHAND acceptance

Input for rate estimates

Luminosity (electron-nucleon): $\mathcal{L}=10^{37}$ /cm 2 /s

Quasi-elastic cross sections: Scaled Dipole (${\sf G}_E^p, {\sf G}_M^p, {\sf G}_M^n$), Galster(${\sf G}_E^n$)

75% n-efficiency

80% p-efficiency

80% live-time

75% tracking efficiency

Combined BigBite/BigHAND acceptance model with 'safety' buffer at edge of BigHAND acceptance

For H(γ, π^+ n) calibration: 6% Cu radiator ($\mathcal{L} = 0.25 \times 10^{37}$ /cm²/s)

Counting rule scaling for (γ, π) $s^7 \frac{d\sigma}{dt} \approx 0.5 \times 10^7 \text{ GeV}^{14} \frac{\text{nb}}{\text{GeV}^2}$ (at 90°): Empirical angular distribution: $\frac{1}{(1-\cos\theta^*)^5(1+\cos\theta^*)^4}$ (actual $\theta^*_{\gamma,\pi} = 93^\circ, 110^\circ, 99^\circ, 123^\circ$)

Bremsstrahlung end-point method with ${\rm E}_{\gamma}{}_{\rm min}$ chosen to give ${\rm P}_{\pi}$ at least 1.5% above maximum possible pion momentum from ($\gamma,2\pi$).

$$\int_{E_{\mbox{min}}}^{E_{e}} \Gamma dk = 0.0030, \ 0.0043, \ 0.0030, \ 0.0026 \ \label{eq:min} \ \mbox{for $\mathbf{Q}^{2}=3.5$, 4.5, 6, 8 (GeV/c)^{2} }$$

Rate Estimates (Counts per hour)

\mathbf{Q}^2 (GeV/c) 2	3.5	4.5	6	8
E _{beam} (GeV)	4	4	5	6
d(e,e'p)	4400	2600	1125	275
d(e,e'n)	1675	1025	440	112
H(e,e'p)	8775	5250	2250	555
H(γ,π^+ n)	800	1240	331	150

Possible beam allocation (Hours)

(Straw man)

${f Q}^2$ (GeV/c) 2	3.5	4.5	6	8
E _{beam} (GeV)	4	4	5	6
d	24	24	48	96
H no radiator	12	12	24	36
(e,e'p) and (γ,π^+ n)				
H with 6% Cu rad	24	24	48	72
H(γ_R,π^+ n)				

Total:444 Hours. Gives 1% (or better) statistical error on measurement and calibration (Fractional err on G_M^n = half of fractional error on cross section ratio, R.)

Conclusion

Promising experiment for near-term extension of Q^2 coverage of $G_{\mathbf{M}}^{\mathbf{n}}$.