Covariance, dynamics and symmetries, and hadron form factors

Craig D. Roberts

cdroberts@anl.gov

Physics Division Argonne National Laboratory

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 2/30

How does one make an almost massless particle from two massive constituent-quarks?

9

- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential

Must exhibit $m_\pi^2 \propto m_q$

Current Algebra ... 1968

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 2/30

- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential
 Must exhibit $m_{\pi}^2 \propto m_q$

Current Algebra ... 1968

First

Contents

Back

Conclusion

The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a well-defined and valid chiral limit, and an accurate realisation of dynamical chiral symmetry breaking.

- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential
 Must exhibit $m_{\pi}^2 \propto m_q$

Current Algebra ... 1968

Back

Contents

The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a well-defined and valid chiral limit, and an accurate realisation of dynamical chiral symmetry breaking.

 Requires detailed understanding of Connection between Current-quark and Constituent-quark masses

- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential Must exhibit $|m_\pi^2 \propto m_q$

Current Algebra ... 1968

masses

Back

Contents

The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a well-defined and valid chiral limit, and an accurate realisation of dynamical chiral symmetry breaking.

Requires detailed understanding of Connection between Current-quark and Constituent-quark Using DSEs

we've provided this.

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 3/30

- Must calculate the hadron's wave function
 - Can't be done using perturbation theory

- Must calculate the hadron's wave function
 - Can't be done using perturbation theory
 - So what? Same is true of hydrogen atom

- Must calculate the hadron's wave function
 - Can't be done using perturbation theory
 - So what? Same is true of hydrogen atom
- Differences

- Must calculate the hadron's wave function
 - Can't be done using perturbation theory
 - So what? Same is true of hydrogen atom
- Differences
 - Here relativistic effects are crucial
 - virtual particles

Quintessence of Relativistic Quantum Field Theory

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 3/30

- Must calculate the hadron's wave function
 - Can't be done using perturbation theory
 - So what? Same is true of hydrogen atom
- Differences
 - Here relativistic effects are crucial
 - virtual particles

Quintessence of Relativistic Quantum Field Theory

throughout > 98% of the pion's/proton's volume

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 3/30

- Must calculate the hadron's wave function
 - Can't be done using perturbation theory
 - So what? Same is true of hydrogen atom
- Differences
 - Here relativistic effects are crucial
 - virtual particles
 - Quintessence of Relativistic Quantum Field Theory

throughout > 98% of the pion's/proton's volume

 Determination of hadrons's wave function requires ab initio nonperturbative solution

of fully-fledged relativistic quantum field theory Back Conclusion

Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 3/30

First

Contents

- Must calculate the hadron's wave function
 - Can't be done using perturbation theory
 - So what? Same is true of hydrogen atom
- Determination of hadron's wave function requires ab initio nonperturbative solution of fully-fledged relativistic quantum field theory

Office of Nuclear Physics

First

Contents

Back

- Modern Physics & Mathematics
 - Still quite some way from being able to do that

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 4/30 $\,$

Well suited to Relativistic Quantum Field Theory

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 4/30 $\,$

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
 - Hadrons as Composites of Quarks and Gluons

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
 - Hadrons as Composites of Quarks and Gluons
 - Qualitative and Quantitative Importance of:
 - · Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from nothing
 - Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?

First

Contents

Back

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
 - Hadrons as Composites of Quarks and Gluons
 - Qualitative and Quantitative Importance of:
 - · Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from nothing
 - Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?

behaviour of $\alpha_s(Q^2)$

⇒ Understanding InfraRed (long-range)

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 4/30

First

Contents

Back

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
 - Hadrons as Composites of Quarks and Gluons
 - Qualitative and Quantitative Importance of:
 - · Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from nothing
 - · Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?
 - Method yields Schwinger Functions \equiv Propagators

First

Contents

Back

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
 - Hadrons as Composites of Quarks and Gluons
 - Qualitative and Quantitative Importance of:
 - · Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from nothing
 - · Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?

Cross-Sections built from Schwinger Functions

First

Contents

Back

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 5/30

Infinitely Many Coupled Equations

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 5/30

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)

Back

Conclusion

Contents

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
 - Not all are Schwinger functions are experimentally observable but all are same VEVs measured in Lattice-QCD simulations ... opportunity for comparisons at pre-experimental level ... cross-fertilisation

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
- Coupling between equations necessitates truncation
 - Weak coupling expansion \Rightarrow Perturbation Theory

Back

Conclusion

Contents

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
- Coupling between equations necessitates truncation
 - Weak coupling expansion
 Perturbation Theory
 Not useful for the nonperturbative problems
 in which we're interested

Back

Conclusion

Contents

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
 H.J. Munczek Phys. Rev. D 52 (1995) 4736
 Dynamical chiral symmetry breaking, Goldstone's
 theorem and the consistency of the Schwinger-Dyson
 and Bethe-Salpeter Equations
 A. Bender, C. D. Roberts and L. von Smekal, Phys.
 Lett. B 380 (1996) 7
 Goldstone Theorem and Diquark Confinement Beyond
 Rainbow Ladder Approximation

Contents Back Conclusion

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD

Back

Conclusion

Contents

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD
- And Formulation of Practical Phenomenological Tool to
 - Illustrate Exact Results

- Infinitely Many Coupled Equations
 - Solutions are Schwinger Functions (Euclidean Green Functions)
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD
- And Formulation of Practical Phenomenological Tool to
 - Make Predictions with Readily Quantifiable Errors

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 7/30

Dressed-Quark Propagator

$$S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}$$

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 7/30
Dressed-Quark Propagator

Dressed-Quark Propagator

Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 7/30

Dressed-Quark Propagator

 Longstanding Prediction of Dyson-Schwinger Equation Studies

Office of Nuclear bi

Contents Back First

Dressed-Quark Propagator

- Longstanding Prediction of **Dyson-Schwinger Equation Studies**
 - E.g., Dyson-Schwinger equations and their application to hadronic physics, C. D. Roberts and A.G. Williams, Prog. Part. Nucl. Phys.
 - 33 (1994) 477

Contents

First

Back

Dressed-Quark Propagator

- Longstanding Prediction of Dyson-Schwinger Equation Studies
 - E.g., Dyson-Schwinger equations and their application to hadronic physics,
 - C. D. Roberts and
 - A.G. Williams,
 - Prog. Part. Nucl. Phys. **33** (1994) 477

First

Contents

Back

form-factor and neutral pion decay width, C. D. Roberts, Nucl. Phys. A **605**

(1996) 475

Dressed-Quark Propagator

- Longstanding Prediction of Dyson-Schwinger Equation Studies
 - E.g., Dyson-Schwinger equations and their application to hadronic physics,
 - C. D. Roberts and
 - A.G. Williams,
 - Prog. Part. Nucl. Phys. **33** (1994) 477

Dressed-Quark Propagator

Office of

Science

First Contents Back Conclusion

Dressed-Quark Propagator

Office of

2002

Back

Contents

First

- "data:" Quenched Lattice Meas.
 - Bowman, Heller, Leinweber, Williams: he-lat/0209129

Dressed-Quark Propagator

Nuclear p

2002

Dressed-Quark Propagator

2002

Back

Contents

Nuclear D

First

Dressed-Quark Propagator

First

Nuclear D

2002

Established understanding of two- and three-point functions

First Contents Back Conclusion

- Established understanding
 - of two- and three-point functions
- What about bound states?

Without bound states, Comparison with experiment is impossible

- Without bound states, Comparison with experiment is impossible
- They appear as pole contributions to n ≥ 3-point colour-singlet Schwinger functions

- Without bound states, Comparison with experiment is impossible
- Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

First

Back

Contents

- Without bound states, Comparison with experiment is impossible
- Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

• What is the kernel, K?

First

Back

Contents

- Without bound states, Comparison with experiment is impossible
- Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

• What is the kernel, K?

or

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 10/30

First

Back

Conclusion

Contents

What is the Long-Range Potential? **Office of** Science U.S. DEPARTMENT OF ENERGY office of Nuclear Phys

First Contents Back Conclusion

Argonne

What is the Long-Range Potential?

Bush Urges Nation To Be Quiet For A Minute While He Tries To Think

In a televised address to the nation, Bush called for "a little peace and quiet."

Contents

Argonne

Office of

Nuclear pp

Back Col

Conclusion

Bethe-Salpeter Kernel

First Contents Back Conclusion

$$P_{\mu} \Gamma^{l}_{5\mu}(k;P) = \mathcal{S}^{-1}(k_{+}) \frac{1}{2} \lambda^{l}_{f} i \gamma_{5} + \frac{1}{2} \lambda^{l}_{f} i \gamma_{5} \mathcal{S}^{-1}(k_{-})$$

$$-M_{\zeta} \, i\Gamma_5^l(k;P) - i\Gamma_5^l(k;P) \, M_{\zeta}$$

Argonne

First

Back

Conclusion

Contents

Office of

$$P_{\mu} \left(\Gamma_{5\mu}^{l}(k;P) \right) = \mathcal{S}^{-1}(k_{+}) \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} + \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} \left(\mathcal{S}^{-1}(k_{-}) \right) - M_{\zeta} i \Gamma_{5}^{l}(k;P) - i \Gamma_{5}^{l}(k;P) M_{\zeta}$$

Office of Science

Satisfies BSE

$$P_{\mu}(\Gamma_{5\mu}^{l}(k;P)) = S^{-1}(k_{+}) \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} + \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} \left(S^{-1}(k_{-})\right)$$

 $-M_{\zeta} i\Gamma_5^l(k;P) - i\Gamma_5^l(k;P) M_{\zeta}$

First

Back

Contents

Satisfies BSE Satisfies DSE

$$P_{\mu}\left(\Gamma_{5\mu}^{l}(k;P)\right) = \mathcal{S}^{-1}(k_{+})\frac{1}{2}\lambda_{f}^{l}i\gamma_{5} + \frac{1}{2}\lambda_{f}^{l}i\gamma_{5}\left(\mathcal{S}^{-1}(k_{-})\right)$$

 $-M_{\zeta} i\Gamma_5^l(k;P) - i\Gamma_5^l(k;P) M_{\zeta}$

First

Back

Conclusion

Contents

Satisfies BSE Kernels must be intimately related Deletion must he must be intimately related

Relation must be preserved by truncation

$$P_{\mu} \left(\Gamma_{5\mu}^{l}(k;P) \right) = \mathcal{S}^{-1}(k_{+}) \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} + \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} \left(\mathcal{S}^{-1}(k_{-}) \right)$$

 $-M_{\zeta} i\Gamma_5^l(k;P) - i\Gamma_5^l(k;P) M_{\zeta}$

First

Satisfies BSE Satisfies DSE Kernels must be intimately related Deletion must be preserved by truncation

- Relation must be preserved by truncation
- Nontrivial constraint

Conclusion

Back

Contents

$$P_{\mu} \left(\Gamma_{5\mu}^{l}(k;P) \right) = S^{-1}(k_{+}) \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} + \frac{1}{2} \lambda_{f}^{l} i \gamma_{5} \left(S^{-1}(k_{-}) \right) \\ -M_{\zeta} i \Gamma_{5}^{l}(k;P) - i \Gamma_{5}^{l}(k;P) M_{\zeta}$$

Back

Conclusion

Contents

Satisfies BSE Satisfies DSE Kernels must be intimately related Deletion must be preserved by the preserved

- Relation must be preserved by truncation
- Failure \Rightarrow Explicit Violation of QCD's Chiral Symmetry

Radial Excitations & Chiral Symmetry

First Contents Back Conclusion

& Chiral Symmetry

$$f_H m_H^2 = -
ho_\zeta^H \mathcal{M}_H$$

First Contents Back Conclusion

(Maris, Roberts, Tandy

nu-th/9707003)

& Chiral Symmetry

 $f_H \ m_H^2 = - \ \rho_\zeta^H \ \mathcal{M}_H$

Mass² of pseudoscalar hadron

(Maris, Roberts, Tandy nu-th/9707003)

& Chiral Symmetry

$$f_H m_H^2 = -
ho_\zeta^H \mathcal{M}_H$$

$$\mathcal{M}_{H} := \operatorname{tr}_{\text{flavour}} \left[M_{(\mu)} \left\{ T^{H}, \left(T^{H} \right)^{\text{t}} \right\} \right] = m_{q_{1}} + m_{q_{2}}$$

• Sum of constituents' current-quark masses • e.g., $T^{K^+} = \frac{1}{2} \left(\lambda^4 + i \lambda^5 \right)$

 $-f_{\pi}k^{\mu}$

k

 $\tilde{A_5^{\mu}}$

& Chiral Symmetry

$$f_H m_H^2 = - \rho_{\zeta}^H \mathcal{M}_H$$

$$\int_{H} p_{\mu} = Z_{2} \int_{q}^{\Lambda} \frac{1}{2} \operatorname{tr} \left\{ \left(T^{H} \right)^{\mathrm{t}} \gamma_{5} \gamma_{\mu} \mathcal{S}(q_{+}) \Gamma_{H}(q; P) \mathcal{S}(q_{-}) \right\}$$

 $i\overline{\Gamma}_{5}$

*i*S

iS

- Pseudovector projection of BS wave function at x = 0
- Pseudoscalar meson's leptonic decay constant

First Contents Back Conclus

 $\vec{\pi}$

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 13/30

 $i(\tau/2)\gamma^{\mu}\gamma_{5}$

(Maris, Roberts, Tandy nu-th/9707003)

Η

k

& Chiral Symmetry

$$f_H \ m_H^2 = -\left(\rho_{\zeta}^H\right) \mathcal{M}_H$$

$$i\rho_{\zeta}^{H} = Z_{4} \int_{q}^{\Lambda} \frac{1}{2} \operatorname{tr} \left\{ \left(T^{H} \right)^{\mathrm{t}} \gamma_{5} \mathcal{S}(q_{+}) \Gamma_{H}(q; P) \mathcal{S}(q_{-}) \right\}$$

 $i\overline{\Gamma_{5}}$

*i*S

iS

• Pseudoscalar projection of BS wave function at x = 0

 $\overline{P_5}$

t i	Contents	Back	Conclusion	
-----	----------	------	------------	--

 $\vec{\pi}$

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 13/30

 $i(\tau/2) \gamma_5$

(Maris, Roberts, Tandy nu-th/9707003)

& Chiral Symmetry

$$f_H m_H^2 = -
ho_\zeta^H \mathcal{M}_H$$

Light-quarks; i.e., $m_q \sim 0$ $f_H \rightarrow f_H^0 \& \rho_{\zeta}^H \rightarrow \frac{-\langle \bar{q}q \rangle_{\zeta}^0}{f_H^0}$, Independent of m_q Hence $m_H^2 = \frac{-\langle \bar{q}q \rangle_{\zeta}^0}{(f_H^0)^2} m_q$... GMOR relation, a corollary

Höll, Krassnigg, Roberts nu-th/0406030

Radial Excitations

& Chiral Symmetry

$$f_H m_H^2 = -
ho_\zeta^H \mathcal{M}_H$$

First Contents Back Conclusion

Höll, Krassnigg, Roberts nu-th/0406030 & Chiral Symmetry

$$f_H m_H^2 = -
ho_{\zeta}^H \mathcal{M}_H$$

Valid for ALL Pseudoscalar mesons

● $\rho_H \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_H \rightarrow 0$

First Contents Back Conclusion
Höll, Krassnigg, Roberts nu-th/0406030 & Chiral Symmetry

$$f_H m_H^2 = -
ho_{\zeta}^H \mathcal{M}_H$$

Valid for ALL Pseudoscalar mesons

 $m^2_{\pi_{n
eq 0}} > m^2_{\pi_{n=0}} = 0$, in chiral limit

- $\rho_H \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_H \rightarrow 0$
 - "radial" excitation of π -meson,

Höll, Krassnigg, Roberts nu-th/0406030 & Chiral Symmetry

$$f_H m_H^2 = -
ho_{\zeta}^H \mathcal{M}_H$$

ALL pseudoscalar mesons except $\pi(140)$ in chiral limit

- Valid for ALL Pseudoscalar mesons
- $\rho_H \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_H \rightarrow 0$
 - "radial" excitation of π -meson,

 $m_{\pi_{n
eq 0}}^2 > m_{\pi_{n=0}}^2 = 0$, in chiral limit $\mathfrak{I} \Rightarrow \mathfrak{f}_H = 0$

First

Contents Back Conclusion

Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 14/30

Covariance, dynamics and symmetries, and hadron form factors

Höll, Krassnigg, Roberts nu-th/0406030 & Chiral Symmetry

$$f_H m_H^2 = -
ho_{\zeta}^H \mathcal{M}_H$$

- Valid for ALL Pseudoscalar mesons
- $\rho_H \Rightarrow$ finite, nonzero value in chiral limit, $\mathcal{M}_H \rightarrow 0$
 - "radial" excitation of π -meson,

First

Contents

Back

Conclusion

 $lackstarrow f_H=0$

 $m_{\pi_{n \neq 0}}^2 > m_{\pi_{n=0}}^2 = 0$, in chiral limit

- ALL pseudoscalar mesons except $\pi(140)$ in chiral limit
- Dynamical Chiral Symmetry Breaking
 - Goldstone's Theorem –

impacts upon every pseudoscalar meson

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 14/30

& Lattice-QCD

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 15/30

McNeile and Michael he-la/0607032

& Lattice-QCD

When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".

McNeile and Michael he-la/0607032

& Lattice-QCD

- When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".
- CLEO: $\tau \rightarrow \pi(1300) + \nu_{\tau}$ $\Rightarrow f_{\pi_1} < 8.4 \text{ MeV}$ Diehl & Hiller he-ph/0105194

First	Contents	Back	Conclus
-------	----------	------	---------

McNeile and Michael he-la/0607032

Back

Conclusion

Contents

Office o

Nuclear D

First

& Lattice-QCD

When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 15/30

McNeile and Michael he-la/0607032

& Lattice-QCD

When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".

First

Nuclear D

 Full ALPHA formulation is required to see suppression, because PCAC relation is at the heart of the conditions imposed for improvement (determining coefficients of irrelevant operators) Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 15/30

McNeile and Michael he-la/0607032

& Lattice-QCD

When we first heard about [this result] our first reaction was a combination of "that is remarkable" and "unbelievable".

The suppression of f_{π_1} is a useful benchmark that can be used to tune and validate lattice QCD techniques that try to determine the properties of excited states mesons Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 15/30

Pion $\dots J = 0$ but \dots

Orbital angular momentum is not a Poincaré invariant. However, if absent in a particular frame, it will appear in another frame related via a Poincaré transformation.

Pion $\dots J = 0$ but \dots

Nonzero quark orbital angular momentum is thus a necessary outcome of a Poincaré covariant description.

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 16/30

$\begin{array}{l} \textbf{Pion} \dots J = 0 \\ \textbf{but} \dots \end{array}$

Pseudoscalar meson Bethe-Salpeter amplitude

$$\chi_{\pi}(k;P) = \gamma_{5} \left[i \mathcal{E}_{\pi_{n}}(k;P) + \gamma \cdot P \mathcal{F}_{\pi_{n}}(k;P) \right]$$
$$\gamma \cdot k \, k \cdot P \, \mathcal{G}_{\pi_{n}}(k;P) + \sigma_{\mu\nu} \, k_{\mu} P_{\nu} \, \mathcal{H}_{\pi_{n}}(k;P) \right]$$

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 16/30

Pion $\dots J = 0$ but \dots

Pseudoscalar meson Bethe-Salpeter amplitude

$$\chi_{\pi}(k;P) = \gamma_{5} \left[i \mathcal{E}_{\pi_{n}}(k;P) + \gamma \cdot P \mathcal{F}_{\pi_{n}}(k;P) \right]$$
$$\gamma \cdot k \, k \cdot P \, \mathcal{G}_{\pi_{n}}(k;P) + \sigma_{\mu\nu} \, k_{\mu} P_{\nu} \, \mathcal{H}_{\pi_{n}}(k;P) \right]$$

• $J = 0 \dots$ but while \mathcal{E} and \mathcal{F} are purely L = 0 in the rest frame, the \mathcal{G} and \mathcal{H} terms are associated with L = 1. Thus a pseudoscalar meson Bethe-Salpeter wave function *always* contains both *S*- and *P*-wave components.

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 16/30

but . . .

Pion ... J = 0

J = 0 ... but while E and F are purely L = 0 in the rest frame, the G and H terms are associated with L = 1. Thus a pseudoscalar meson Bethe-Salpeter wave function *always* contains both S- and P-wave components.
 Introduce mixing angle θ_π such that

 $\chi_{\pi} \sim \cos heta_{\pi} | L = 0
angle \ + \sin heta_{\pi} | L = 1
angle$

but . . .

Pion ... J = 0

• $J = 0 \dots$ but while \mathcal{E} and \mathcal{F} are purely L = 0 in the rest frame, the \mathcal{G} and \mathcal{H} terms are associated with L = 1. Thus a pseudoscalar meson Bethe-Salpeter wave function *always* contains both *S*- and *P*-wave components.

but . . .

Pion ... J = 0

• $J = 0 \dots$ but while \mathcal{E} and \mathcal{F} are purely L = 0 in the rest frame, the \mathcal{G} and \mathcal{H} terms are associated with L = 1. Thus a pseudoscalar meson Bethe-Salpeter wave function *always* contains both *S*- and *P*-wave components.

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 17/30

Next Steps ... Applications to excited states and axial-vector mesons, e.g., will improve understanding of confinement interaction between light-quarks.

- Next Steps ... Applications to excited states and axial-vector mesons, e.g., will improve understanding of confinement interaction between light-quarks.
- Move on to the problem of a symmetry preserving treatment of hybrids and exotics.

Another Direction ... Also want/need information about three-quark systems

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 17/30

With this problem ... current expertise at approximately same point as studies of mesons in 1995.

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 17/30

First

Back

Contents

Namely ... Model-building and Phenomenology, constrained by the DSE results outlined already.

> Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 17/30

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 18/30

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

 Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 18/30

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

 Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 Covariant dressed-quark Faddeev Equation

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 - Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)
 Easily obtained:

$$\left(\frac{1}{N_H}\sum_{H}\frac{[M_H^{\exp} - M_H^{\text{calc}}]^2}{[M_H^{\exp}]^2}\right)^{1/2} = 2\%$$

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 - Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)
 Easily obtained:

$$\left(\frac{1}{N_H}\sum_{H}\frac{[M_H^{\exp} - M_H^{\text{calc}}]^2}{[M_H^{\exp}]^2}\right)^{1/2} = 2\%$$

(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 - Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)
 Easily obtained:

$$\left(\frac{1}{N_H}\sum_{H}\frac{[M_H^{\exp} - M_H^{\text{calc}}]^2}{[M_H^{\exp}]^2}\right)^{1/2} = 2\%$$

First

Conclusion

Back

Contents

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 - Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet) Easily obtained:

$$\left(\frac{1}{N_H}\sum_{H}\frac{[M_H^{\exp} - M_H^{\text{calc}}]^2}{[M_H^{\exp}]^2}\right)^{1/2} = 2\%$$

First

But is that good?

Conclusion

Back

Contents

• Cloudy Bag: $\delta M_+^{\pi-\mathrm{loop}} = -300$ to -400 MeV!

Höll, Kloker, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 - Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet) Easily obtained:

$$\left(\frac{1}{N_H}\sum_{H}\frac{[M_H^{\exp} - M_H^{\text{calc}}]^2}{[M_H^{\exp}]^2}\right)^{1/2} = 2\%$$

First

Contents

Back

But is that good?

Conclusion

- Cloudy Bag: $\delta M_+^{\pi-\mathrm{loop}} = -300$ to -400 MeV!
- Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084

Faddeev equation

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 19/30

Faddeev equation

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 19/30

Faddeev equation

First

Back

Contents

- Linear, Homogeneous Matrix equation
- Yields wave function (Poincaré Covariant Faddeev Amplitude) that describes quark-diquark relative motion within the nucleon
- Scalar and Axial-Vector Diquarks ... In Nucleon's Rest Frame Amplitude has ... s-, p- & d-wave correlations

Diquark correlations

QUARK-QUARK Covariance, dynamics and symmetries, and hadron form factors

Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 20/30

Same interaction that

Diquark correlations

describes mesons also generates three coloured quark-quark correlations: blue-red, blue-green, green-red

Confined ... Does not escape from within baryon

Scalar is isosinglet, Axial-vector is isotriplet

DSE and lattice-QCD

Conclusion

Back

Contents

 $egin{aligned} m_{\left[ud
ight]_{0^+}} &= 0.74 - 0.82 \ m_{\left(uu
ight)_{1^+}} &= m_{\left(ud
ight)_{1^+}} = m_{\left(dd
ight)_{1^+}} = 0.95 - 1.02 \end{aligned}$

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 20/30

Harry Lee Pions and Form Factors

First Contents Back Conclusion

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 21/30
Harry Lee

Pions and Form Factors

- Dynamical coupled-channels model ... Analyzed extensive JLab data ... Completed a study of the $\Delta(1236)$
 - Meson Exchange Model for πN Scattering and $\gamma N \rightarrow \pi N$ Reaction, T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)
 - Dynamical Study of the Δ Excitation in $N(e, e'\pi)$ Reactions, T. Sato and T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)

Harry Lee

Pions and Form Factors

- Dynamical coupled-channels model ... Analyzed extensive JLab data ... Completed a study of the $\Delta(1236)$
 - ▶ Meson Exchange Model for πN Scattering and $\gamma N \rightarrow \pi N$ Reaction, T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)
 - **Dynamical Study of the** △ Excitation in $N(e, e'\pi)$ Reactions, T. Sato and T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)
- Pion cloud effects are large in the low Q^2 region.

Argonne

First

Back

Conclusion

Contents

Ratio of the M1 form factor in $\gamma N \rightarrow \Delta$ transition and proton dipole form factor G_D . Solid curve is $G_M^*(Q^2)/G_D(Q^2)$ including pions; Dotted curve is $G_M(Q^2)/G_D(Q^2)$ without pions.

Harry Lee

3

4

Pions and Form Factors

- Dynamical coupled-channels model ... Analyzed extensive JLab data ... Completed a study of the $\Delta(1236)$
 - ▶ Meson Exchange Model for πN Scattering and $\gamma N \rightarrow \pi N$ Reaction, T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996)

N

- **Dynamical Study of the** △ Excitation in $N(e, e'\pi)$ Reactions, T. Sato and T.-S. H. Lee, Phys. Rev. C 63, 055201/1-13 (2001)
- Pion cloud effects are large in the low Q^2 region.

Back

Contents

Responsible for only 2/3 of result at small Q²

Ratio of the M1 form factor in $\gamma N \rightarrow \Delta$

transition and proton dipole form factor G_D .

Dominant for $Q^2 > 2 - 3 \text{ GeV}^2$

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 21/30

2

 $Q^2 (GeV/c)^2$

Dressed

Bare

1

Results: Nucleon and \triangle Masses

First Contents Back Conclusion

Back

Conclusion

Contents

Results: Nucleon and \triangle Masses

Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and Δ masses

Set A – fit to the actual masses was required; whereas for Set B – fitted mass was offset to allow for " π -cloud" contributions

● $m_{1^+} \to \infty$: $M_N^A = 1.15 \,\text{GeV}; \, M_N^B = 1.46 \,\text{GeV}$

Back

Contents

Results: Nucleon and \triangle Masses

Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and Δ masses

Set A – fit to the actual masses was required; whereas for Set B – fitted mass was offset to allow for " π -cloud" contributions

• $m_{1^+} \rightarrow \infty$: $M_N^A = 1.15 \,\mathrm{GeV}; \, M_N^B = 1.46 \,\mathrm{GeV}$

Axial-vector diquark provides significant attraction

Back

Contents

Results: Nucleon and \triangle Masses

Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and Δ masses

Set A – fit to the actual masses was required; whereas for Set B – fitted mass was offset to allow for " π -cloud" contributions

	$m_{1^+} \rightarrow \infty$: $M_N^A =$	$1.15 {\rm GeV}; M_N^B = 1.46 {\rm GeV}$
--	--	--

Constructive Interference: 1^{++} -diquark + $\partial_{\mu}\pi$

Nucleon: I=0, s=1/2 - Scalar Diguark Nucleon: I=1, s=1/2 - Scalar Diguark S,(p) \$₂(p) 1.0 0.16 0.9 0.14 0.8 0[®] Chebyshev momer 0⁴ Chebyshev momen 0.12 ---- 1" Chebyshev moment --- 1" Chebyshev moment 0.7 ---- 2rd Chebyshey momen --- 2rd Chebyshev momen 0.10 0.6 0.08 0.5 0.4 0.06 03 0.04 02 0.02 0.1 0.00 0.0 -0.02 -0.1 -0.04 -0.2 -0.3 0.0 -0.06 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.6 0.8 1.0 1.2 p [GeV] p [GeV] Nucleon: I=0, s=1/2 - AV diquark Nucleon: I=1, s=1/2 - AV Diguark A.(p) A,(p) 0.00 0.035 -0.020.030 0" Chebyshev momen --- 1" Chebyshev moment 0.025 -0.04 2nd Chebyshev moment 0.020 -0.06 0.015 -0.08 0th Chebyshey moment 1" Chebyshev moment 0.010 2rd Chebyshev momen -0.10 0.005 -0.12 0.000 -0.14 -0.005 0.6 0.8 1.0 1.0 0.2 0.4 1.2 1.4 0.2 0.4 0.6 0.8 1.2 p [GeV] p [GeV] Nucleon: I=0, s=1/2 - AV Diguark Nucleon: I=1, s=1/2 - AV Diguark 1/, A,(p) + 1/, A,(p) 1, A (p) + 1, A (p) 0.15 0.030 0.10 0.05 0.025 0.00 0^{*} Chebyshev moment --- 1" Chebyshev moment 0.020 -0.05 -- 2rd Chebyshev moment -0.10 0.015 -0.15 -0.20 0.010 -0.250.005 -0.30 0ⁿ Chebyshey momeni Chebyshev moment -0.35 0.000 -0.40 -0.45 -0.005 -0.50 -0.55 -0.010 0.2 0.4 0.6 0.8 1.0 1.2 14 0.2 0.6 0.8 1.0 1.2 p [GeV] p (GeV) Nucleon: I=1, s=3/2 - AV Diguark Nucleon: I=2, s=3/2 - AV Diguark A_s(p) - A_s(p): I=1, s=3/2 A.(p) - A.(p) 0.05 0.006 0.04 0.004 0.02 0.002 0.000 0.00 -0.002 -0.02 -0.004 ~0.04 -0.00F -0.06 -0.008 -0.08 -0.010 -0.10 0th Chebyshev moment -0.012 1" Chebyshev moment -0.12 -0.01/ 0" Chebyshev momen --- 2rd Chebyshev momen --- 1" Chebyshev moment -0.14 -0.016 2rd Chebyshev moment -0.16 -0.018 0.8 1.0 1.0 0.2 0.4 0.6 1.2 14 0.0 0.2 0.4 0.6 0.8 1.2 1.4 p [GeV] p (GeV)

Angular Momentum Rest Frame

M. Oettel, et al. nucl-th/9805054 Crude estimate based on magnitudes \Rightarrow probability for a *u*-quark to carry the proton's spin is $P_{u\uparrow} \sim 80$ %, with $P_{u|} \sim 5$ %, $P_{d\uparrow} \sim 5$ %, $P_{d|} \sim 10$ %. Hence, by this reckoning $\sim 30\%$ of proton's rest-frame spin is located in dressed-quark

angular momentum.

Nucleon-Photon Vertex

First Contents Back Conclusion

M. Oettel, M. Pichowsky and L. von Smekal, nu-th/9909082 6 terms

Nucleon-Photon Vertex

constructed systematically ... current conserved automatically

for on-shell nucleons described by Faddeev Amplitude

First Contents Back Conclusi

M. Oettel, M. Pichowsky and L. von Smekal, nu-th/9909082 6 terms

Nucleon-Photon Vertex

constructed systematically ... current conserved automatically

for on-shell nucleons described by Faddeev Amplitude

First

GE/GM

Combine these elements

 $\label{eq:covariance} \begin{array}{l} \mbox{Covariance, dynamics and symmetries, and hadron form factors} \\ \mbox{Exclusive Reactions at High Momentum Transfer, $21-24May/07, - p. 25/30} \end{array}$

Combine these elements ...

Combine these elements ...

Office of Nuclear Physics

Combine these elements

Combine these elements

First Contents Back Conclusi

Combine these elements ...

Dressed-Quark Core Ward-Takahashi 1.5 Identity preserving ᢦᠣᠣᢩᠣᡓᠵᢩᢩᢩᢩᢦ <u>⊸</u> ⊽<u>∓</u> ${\rm G}_{\rm D}^{\rm p}$ current $G_{\rm E}^{\rm p}$ / 0.5 Anticipate and **Estimate Pion** covariant Fadeev result Cloud's Contribution $_{-0.5}$ Rosenbluth 0 precision Rosenbluth polarization transfer polarization transfer ٥ All parameters fixed in 2 8 other applications ... Not varied. $Q^2 [GeV^2]$

First

Back

Contents

Combine these elements ...

Dressed-Quark Core Ward-Takahashi 1.5 Identity preserving ᡐᠣᠣᢩᠣᠣᢩᡔᡚ <u>⊸</u> ⊽<u>∓</u> ${\rm G}_{\rm D}^{\rm D}$ current G_{E}^{p} 0.5 Anticipate and Estimate Pion covariant Fadeev result Cloud's Contribution _0.5 Rosenbluth 0 precision Rosenbluth polarization transfer polarization transfer All parameters fixed in 2 8 other applications ... Not varied. $Q^2 [GeV^2]$

Agreement with Pol. Trans. data at $Q^2 \gtrsim 2 \, {
m GeV^2}$

Office o

Nuclear D

First

Contents Back Conclusion

Combine these elements ...

Dressed-Quark Core Ward-Takahashi 1.5 Identity preserving ₽₽₽₽₽₽ ठू ⊽॒ ${\rm G}_{\rm D}^{\rm p}$ current $G_{\rm E}^{\rm p}$ / 0.5 Anticipate and Estimate Pion covariant Fadeev result Cloud's Contribution _0.5 Rosenbluth 0 precision Rosenbluth polarization transfer polarization transfer All parameters fixed in 2 8 other applications ... Not varied. $Q^2 [GeV^2]$

Back

Conclusion

Contents

- Agreement with Pol. Trans. data at $Q^2 \gtrsim 2 \, {
 m GeV^2}$
- Correlations in Faddeev amplitude quark orbital angular momentum – essential to that agreement

Combine these elements ...

Dressed-Quark Core Ward-Takahashi 1.5 Identity preserving <mark>∞¹0¹0¹0²0²0</mark> <u>⊼</u> ⊽<u>∓</u> ${\rm G}_{\rm D}^{\rm p}$ current $G_{\rm E}^{\rm p}$ 0.5 Anticipate and Estimate Pion covariant Fadeev result Cloud's Contribution _0.5 0 Rosenbluth precision Rosenbluth polarization transfer polarization transfer All parameters fixed in 2 8 other applications ... Not varied. $Q^2 [GeV^2]$

Contents

Back

- Agreement with Pol. Trans. data at $Q^2 \gtrsim 2 \, {
 m GeV^2}$
- Correlations in Faddeev amplitude quark orbital angular momentum – essential to that agreement
- Predict Zero at $Q^2 pprox 6.5 {
 m GeV}^2$

First	Contents	Back	Concl	us
-------	----------	------	-------	----

sion

Nuclear Phi

First

Back

Contents

Back

Conclusion

Contents

Exclusive Reactions at High Momentum Transfer, 21-24May/07, - p. 26/30

First Contents Back Conclusion

Epilogue

First Contents Back Conclusion

DCSB exists in QCD.

Epilogue

- DCSB exists in QCD.
 - It is manifest in the dressed light-quark propagator.
 - It impacts dramatically upon observables.

- tell everyone lin sorry about EVERYTHING

Epilogue

- DCSB exists in QCD.
 - It is manifest in the dressed light-quark propagator.
 - It impacts dramatically upon observables.
- Confinement

... tell everyone lin sorry about EVERYTHING

Epilogue

- DCSB exists in QCD.
 - It is manifest in the dressed light-quark propagator.
 - It impacts dramatically upon observables.
- Confinement

Back

Conclusion

Contents

- Can be realised in dressed propagators of elementary excitations
 - Observables can be used to explore model realisations

First

- tell everyone lin sorry about EVERYTHING

Epilogue

- DCSB exists in QCD.
 - It is manifest in the dressed light-quark propagator.
 - It impacts dramatically upon observables.
- Confinement
- Office of Science
- Office of Nuclear Physics

Argonne

Contents

Back

Conclusion

- Can be realised in dressed propagators of elementary excitations
- Observables can be used to explore model realisations
- An excellent way to test conjectures and constrain the possibilities

Contents

- 1. Dichotomy of the Pion
- 2. Dyson-Schwinger Equations
- 3. Persistent Challenge
- 4. Dressed-Quark Propagator
- 5. Quenched-QCD Dressed-Quark
- 6. Hadrons
- 7. Bethe-Salpeter Kernel
- 8. Excitations& Chiral Symmetry
- 9. Radial Excitations
- 10. Radial Excitations& Lattice-QCD
- 11. Pion J = 0

- 12. Nucleon EM Form Factors
- 13. Faddeev equation
- 14. Diquark correlations
- 15. Pions and Form Factors
- 16. Results: Nucleon & Δ Masses
- 17. Angular Momentum
- 18. Nucleon-Photon Vertex
- 19. Form Factor Ratio: GE/GM
- 20. Neutron Form Factors
- 21. Parametrising diquark properties
- 22. Contemporary Reviews

First

Parametrising

diquark properties

First Contents Back Conclusion

Parametrising

diquark properties

Dressed-quark ... fixed by DSE and Meson Studies

... Burden, Roberts, Thomson, Phys. Lett. **B 371**, 163 (1996)

First Contents Back Conclusion

Parametrising diquark properties

- Dressed-quark ... fixed by DSE and Meson Studies ... Burden, Roberts, Thomson, Phys. Lett. **B 371**, 163 (1996)
- Non-pointlike scalar and pseudovector colour-antitriplet diquark correlations – described by
 - Bethe-Salpeter amplitudes ... width for each ω_{JP}
 - Confining propagators ... mass for each m_{J^P}

Parametrising diquark properties

- Dressed-quark ... fixed by DSE and Meson Studies ... Burden, Roberts, Thomson, Phys. Lett. **B 371**, 163 (1996)
- Non-pointlike scalar and pseudovector colour-antitriplet diquark correlations – described by
 - Bethe-Salpeter amplitudes ... width for each ω_{J^P}
 - Confining propagators . . . mass for each m_{J^P} Widths fixed by "asymptotic freedom" condition –

$$\frac{d}{dK^2} \left(\frac{1}{m_{J^P}^2} \mathcal{F}(K^2/\omega_{J^P}^2) \right)^{-1} \bigg|_{K^2 = 0} = 1 \implies \omega_{J^P}^2 = \frac{1}{2} m_{J^P}^2 \,,$$

Only two parameters; viz., diquark "masses": m_{J^P}

Covariance, dynamics and symmetries, and hadron form factors Exclusive Reactions at High Momentum Transfer, 21-24May/07, – p. 29/30

First

Back

Contents

Contemporary Reviews

- Dyson-Schwinger Equations: Density, Temperature and Continuum Strong QCD
 C.D. Roberts and S.M. Schmidt, nu-th/0005064, Prog. Part. Nucl. Phys. 45 (2000) S1
- The IR behavior of QCD Green's functions: Confinement, DCSB, and hadrons ...
 - R. Alkofer and L. von Smekal, he-ph/0007355,
 - Phys. Rept. 353 (2001) 281

First

Back

Contents

- Dyson-Schwinger equations: A Tool for Hadron Physics
 P. Maris and C.D. Roberts, nu-th/0301049,
 Int. J. Mod. Phys. E12 (2003) pp. 297-365
- Infrared properties of QCD from Dyson-Schwinger equations.
 C. S. Fischer, he-ph/0605173,
 - J. Phys. G 32 (2006) pp. R253-R291