

Future DVCS experiments in Hall A/Jefferson Lab

J. Roche (Ohio University and JLab) For the DVCS/Hall A collaboration

Measuring
$$\vec{e}p
ightarrow ep\gamma$$
 and $ep
ightarrow ep\pi^0$ cross-sections

- E07-007: to completely separate (amplitude) observables
- E12-06-114: large x_{Bj} , Q^2 and t coverage taking advantage of the CEBAF 11 GeV beam

DVCS experiments in Hall A so far: E00-110 and E03-106

Future DVCS exp. in Hall A/ JLab

Critical assessment of E00-110

✓ The ARS are efficient to identify signals at high luminosity. L_{LD2} (per nucleon): 4 10³⁷ cm⁻²s⁻¹ at 1 m from the target

- ✓ The proton array is not necessary (see missing mass spectra)
 - Can reach smaller t
 - The cross section increases as t decreases
- o Poor π^0 statistic at low Q^2

the pion energy decreases as Q²decreases

- Lower the threshold for trigger
- Improve live time and bandwidth for the DAQ
- Transmission through the calorimeter blocks degrades with radiation
 to perform longer experiments needs to "reset" blocks regularly
 - Implement a near UV curing method a la PVA4-MAMI

DVCS cross-sections from E00-110

Future DVCS exp. in Hall A/ JLab

E07-007: Complete separation of the (amplitude) observables.

- $\Re e(C^{I})$ and $\Re e(C^{I} + \Delta C^{I})$ MIX with C^{DVCS} in the azimuthal analysis

- Kinematic coefficients depend on the beam energy which allows a Rosenbluth-like separation of the BH-DVCS and DVCS²
- Goal 1: measure the total cross section d⁴σ using two beam energies to separate C^{DVCS} from Re(Cⁱ) and Re(Cⁱ+ΔCⁱ) at fixed x_{Bj}=0.36 for three Q²=2.3, 1.9 and 1.5 GeV². E_{beam} ranging from 3.5 to 6 GeV

E07-007: projected results for the DVCS² and interference separation

Projected results at Q²=1.5 GeV² using <u>simulated</u> cross sections at 2 beam energies

Analyzing the data without extracting C^{DVCS}

 \blacktriangle Analyzing the data and supposing $C^{\text{DVCS}}=0$

E07-007: other physics reaches

- Measure the ep->ep γ cross-section (d⁴ σ) at Q²=2.3, 1.9, 1.5 GeV²
 - Need to improve the π^0 subtraction scheme
 - Will provide a test of the scaling with unpolarized cross-section (E00-110 provided (strong) evidence for scaling with polarized cross-section)
- Measure the 5 response functions of deep ep->ep π^0 at Q²=2.3, 1.9, 1.5 GeV²
 - Separate σ_{LT} , σ_{TT} , $\sigma_{LT'}$ from $\sigma_L + \epsilon \sigma_T$ by azimuthal variation and σ_L from σ_T by Rosenbluth method
 - First test of factorization in this deep meson production channel
 - If scaling is observed can extract flavor information on GPDs

Experiment approved by the JLab PAC in January 2007 to receive polarized beam at E_{beam}>5.75GeV

E00-110 results in term of GPDs linear combinations

- \cdot for this analysis, $|\mathsf{DVCS}|^2$ is neglected
- t-distribution at one x_{B_i} =0.36
- $\cdot Q^2$ dependence only for the Im. part

Phys. Rev. Lett. 97, 262002 (2006)

•Wider range in 0.36 < x_{Bj} < 0.6 3 < Q² < 9 GeV²

•High statistic t-dependence at each x_{Bj} and Q²

 Strong test of factorization at each (x_{Bj},t)

E12-06-114: Hall A/CEBAF 12 GeV experiment

Each bin (x_{B_i}, Q^2, t) get the same statistic than in E00-110

Experiment approved by the JLab PAC in 2006

E12-06-114: physics reach

- Q² variation:
 - 2:1 range at each x_{B_j}
 - Accurate measurement of the twist-2 dominance
- x_{Bi} variation (dependence):
 - Precision data on variation of t-dependence with x_{Bi}
 - Study of transverse correlations
- t variation:
 - 5 bins in 0 < $t-t_{min}$ < 1 GeV²
 - Fourier-conjugate to the spatial distributions of quark as a function of their momentum fraction x_{B_i}
- π^0 electro-production cross section:
 - Dominance of twist 2 (isolation of leading twist)
 - Sensitive to nucleon GPDs $ilde{H}$ and $ilde{E}$

The future of the DVCS program in Hall A at Jlab

- Two experiments already approved by the Jlab/PAC
 - Building up on the successful experimental technique of E00-110 and E03-106
 - Will measure absolute cross-sections both helicity independent and helicity dependent
 - Will measure both deep photon and deep pion electro-production
 - E07-007 before the 12 GeV upgrade, E12-06-114 after the upgrade
- •<u>Physics reach</u>

- What is the size to the DVCS² term with respect to the interference term and the BH² term?

- Does the scaling observed in the Imaginary sector hold on the Real sector for photon electro-production? What about the deep pion electro-production?

- Extended kinematic range for the Compton Form Factor measurement:

$$t-t_{min}$$
 < 1GeV² Q²: 2 to 9 GeV²

Future DVCS exp. in Hall A/ JLab

x_{Bi}: 0.36 to 0.6

Backup

- Expanded PbF2 calorimeter: 11*12 + 76 blocks
 - Higher acceptance in π^0 measurements and subtraction
 - Increase t-acceptance: $\Delta(t_{min}-t)=1 \text{ GeV}^2$
- Electronics:
 - Upgraded calorimeter trigger system: lower threshold to increase π^0 statistics
 - DAQ upgrade to improve livetime and bandwidth
- No proton detection: calorimeter can handle 4*E00-110 rates
- Flared beam pipe to minimize secondary background in the calorimeter Background dominated by Moeller and π^0 decays from target

Calorimeter radiation damage

• E00-110 experience

- Dose estimate by e and π^0 above 15⁰ and Moeller below 10⁰
- Dose grows a factor of 5 from 11.5° to 7.5°
- 20% gain loss without loss in missing mass and energy resolution
- New experiments strategies
 - Minimum angle of the closest block: 7°
 - Luminosity equal to the peak luminosity in EOO-110 taking into account the distance target-calorimeter
 - Blue light curing (MAMI-A4): ~17h to cure a transparency loss of 25%

Curing every ~ 5th day of running at the minimum angle

E00-110: π^{0} electroproduction *preliminary* results

Future DVCS exp. in Hall A/ JLab

May 20, 2007

E00-110: π^{0} electroproduction *preliminary* results

 $\frac{d\sigma}{dt} = \frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi + \lambda \sqrt{2\varepsilon(1-\varepsilon)} \frac{d\sigma_{LT'}}{dt} \sin\phi$

π^0 : Expected σ_L Rosenbluth separation at Q²=1.5 GeV²

Future DVCS exp. in Hall A/ JLab

May 20, 2007

DVCS cross-sections from E00-110

Phys. Rev. Lett. 97, 262002 (2006)

Future DVCS exp. in Hall A/ JLab

May 20, 2007

Projected cross-section precision for E12-06-114

- Model by Vanderhaeghen, Guichon & Guidal (VGG), with the factorized tdependence
- 250 k events/setting or 40 k events / t-bin
- Similar statistic accuracy as E00-110

Туре		Relative errors (%)	
		E00-110	proposed
Luminosity	target length and beam charge	1	1
HRS-Calorimeter	Drift chamber multi-tracks	1.5	1
	Acceptance	2	2
	Trigger dead-time	0.1	0.1
DVCS selection	π^0 subtraction	3	1
	e(p,e' γ) π N contamination	2	3
	radiative corrections	2	1
Total cross section sum		4.9	4.1
Beam	Polarization $\Delta P/P$	2	1
Total cross section difference		5.3	4.2