

Light-Cone Sum Rules for Form Factors of the $N\gamma\Delta$ transition

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

2 The Nucleon-Δ-transition

3 Conclusions

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Schedule

2 The Nucleon-Δ-transition

3 Conclusions

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Why examine $p\gamma \rightarrow \Delta^+$?

it is a possibility to study the proton

a selection rule (1965) predicts only magnetic dipole transitions *M*1 for $p\gamma \rightarrow \Delta^+$

the selection rule can be violated if the proton contains d-state contributions (S.L. Glashow, Physika 96A 1979)

interesting quantities at $Q^2 = 0$

 $R_{EM} = \frac{E2}{M1}$ and G_M

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Why examine $p\gamma \rightarrow \Delta^+$?

it is a possibility to study the proton

- a selection rule (1965) predicts only magnetic dipole transitions *M*1 for $p\gamma \rightarrow \Delta^+$
- the selection rule can be violated if the proton contains d-state contributions (S.L. Glashow, Physika 96A 1979)

interesting quantities at $Q^2 = 0$

$$R_{EM} = \frac{E2}{M1}$$
 and G_M

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Experimental and theoretical results for R_{EM}

Experimental Results						
	Experiment	year	R _{EM}			
_	MAMI	1997	$-2.5 \pm 0.4\%$			
	LEGS	1997	$-3.0 \pm 0.5\%$			
	MIT-Bates OOPS	2003	$-2.2 \pm 0.9\%$			
	MAMI	2004	$-2.73\pm0.03\%$			

Theoretical Results			
Approac	h year	R _{EM}	
MIT bag mo	dels before 1990	-2%0	-
Skyrme mo	odel 1987	$\sim -5\%$	
Lattice	2004	$-2.0 \pm 1.0\%$	
LCSR	2004	-6.8%	
QCDSF	R 1984	???	

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

LCSR and the form factor G_M

(Braun, Lenz, Peters & Radyushkin Phys.Rev. D73 (2006))

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

A Classical Problem

- consider the classical problem: the magnetic moments of nucleons
- the problem is well known and thus provides an excellent testing-ground for the technique
- classical QCD sum rules are known to work well

(Ioffe & Smilga NPB 232 (1984) 109-142

Balitsky & Yung PLB 129 (1983) 328)

- there are no unexpected subtleties
- LCSR based on nucleon distribution amplitudes work well

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

The Process on the Hadron Level

the starting point for Sum Rule approaches is a correlation function:

$$\Pi^{\mu\nu}(p,q)e_{\nu} = i^{2} \int d^{4}x \int d^{4}y \ e^{jpx+iqy} \langle 0| \ \mathcal{T}\eta(x)j_{em}^{\nu}(y)\overline{\eta}(0) | 0 \rangle e_{\nu}$$

$$\eta(x) = \varepsilon^{abc} \left(u(x)^{a} \mathcal{C}\gamma_{\nu} u(x)^{b} \right) \gamma_{5}\gamma^{\nu} d^{c}(x) \text{ loffe Nucl. Phys. B188, 317 (1981)}$$

$$\blacksquare \text{ in the region } p^{2} = p_{1}^{2} = m_{P}^{2} \text{ und } (p+q)^{2} = p_{2}^{2} = m_{P}^{2} \text{ the process}$$

$$p \to p\gamma \text{ dominates}$$

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

On the QCD side

- if p² ≪ 0 and (p + q)² ≪ 0 one can calculate the correlation function using QCD
- a matching of the hadronic representation and the QCD calculation allows the extraction of the form factors
- the only problem is how to treat the QCD side \rightarrow OPE

in our case there is, however, one additional subtlety:

as $q^2 = 0$, a large value of $|p^2|$ does not guarantee a small value of |y|

we will therefore have to make use of the so called background field method

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

LCSR vs. SVZ SR

in classical SVZ sum rules the correlator is expanded in a power series of $\left(\frac{\Lambda_{QCD}^2}{-\rho^2}\right)^n$ and local condensates of increasing dimension

$$\langle \overline{q}q
angle ~~ \langle 0 | ~ rac{lpha_s}{\pi} G^a_{\mu
u} G^{\mu
u}_a ~ | 0
angle ~~ \langle 0 | ~ \overline{q}\sigma_{\mu
u} G^{\mu
u} q \, | 0
angle$$

as $q^2 = 0$ does not imply q = 0, terms like

$$\left(\frac{pq}{-p^2}\right)^m \left(\frac{\Lambda_{QCD}^2}{-p^2}\right)^n$$

have to be taken into account

- one possible way: use $q \rightarrow 0$ and so p = p + q
- this will be a source for new problems

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

LCSR vs. SVZ SR II

as one has to keep q = 0 in the SVZ approach. The ground state contribution can be distinguished from the contributions due to excited states by the double pole

$$\frac{\not p + m_N}{m_N^2 - p^2} \mathcal{V} \frac{\not p + m_N}{m_N^2 - p^2} + \frac{\not p + m_N}{m_N^2 - p^2} \mathcal{V}' \frac{\not p + m_{N'}}{m_{N'}^2 - p^2}$$

however if one wants to study transition between hadrons of different mass, the double pole vanishes

$$\frac{1}{(m^2 - p^2)(m^{*2} - p^2)} = \frac{1}{m^{*2} - m^2} \left(\frac{1}{m^2 - p^2} - \frac{1}{m^{*2} - p^2} \right)$$

and the separation of ground state and continuum becomes difficult at best

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

LCSR vs. SVZ SR III

• the other option
$$q^2 = 0$$
, but $q \neq 0$ and $\left(\frac{2qp}{p^2}\right) \sim 1$

the expansion then contains terms like

$$\left(\frac{\Lambda_{QCD}^2}{-p^2}\right)^k \left(\frac{2qp}{-p^2}\right)^n$$

which have to be resummed

- this is possible by changing the expansion parameter from operator dimension → operator twist
- the price, one has to pay, is the introduction of new non-local operators
 the distribution amplitudes

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Distribution amplitudes

consider again a three-point correlator

 $\left< 0 \right| \mathcal{T} \left\{ \left. \eta_1(x) J_{em}(y) \eta_2(0) \right\} \left| 0 \right> \right.$

this can be represented in two ways

 $\langle 0 | \mathcal{T} \eta_1(x) J_{em}(y) | B(p) \rangle$

 $\left< 0 \right| \mathcal{T} \eta_1(x) \eta_2(0) \left| \gamma(q) \right>$

LCSR using baryon distribution amplitudes LCSR using photon distribution amplitudes

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

$P \rightarrow P\gamma$ on quark level

■ in the kinematic region $-p^2 \ll 0$ and $-(p+q)^2 \ll 0$ we can calculate the correlation function using QCD

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

The leading-twist term

- equate the result for the diagram and the hadronic expression, containing the Pauli and Dirac form factors
- perform a Borel transformation to suppress contributions of the unknown continuum
- remove the continuum from both sides

$$F_2(0) = \frac{8\pi^2 m_p \langle \overline{q}q \rangle}{|\lambda_P|^2} e^{m_p^2/t} \left[\frac{e_d}{3} \varphi(1/2) t^2 \left(1 - e^{-S_0/t} \left(1 + \frac{S_0}{t} \right) \right) \right]$$

where *t* is the Borel parameter, S_0 is the continuum threshold and $\varphi(1/2) = 3/2\chi$

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Results for the magnetic moment of the proton

J.R. Phys. Rev. D 75, 074025 (2007)

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

2 The Nucleon-Δ-transition

3 Conclusions

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

$$N\gamma \to \Delta$$

- the Δ has a spin of 3/2 and is described by a Rarita-Schwinger-Spinor Δ^μ_i
- the correlator fullfils the Rarita-Schwinger-condition: $\gamma_{\mu}\Pi^{\mu\nu} = 0$

Transition matrix element

$$\begin{split} \left\langle \Delta^{\mu}(\boldsymbol{p}) \right| \boldsymbol{j}^{\nu} \left| \boldsymbol{P}(\boldsymbol{p} + \boldsymbol{q}) \right\rangle &= \Delta^{\mu}(\boldsymbol{p}) \left[G_{2} \left(\boldsymbol{q}^{2} \right) \left(\boldsymbol{g}_{\beta \nu} \boldsymbol{q} \cdot \left(\boldsymbol{p} + \frac{\boldsymbol{q}}{2} \right) - \boldsymbol{q}_{\beta} \left(\boldsymbol{p} + \frac{\boldsymbol{q}}{2} \right)_{\nu} \right) \\ &+ G_{1} \left(\boldsymbol{q}^{2} \right) \left(\boldsymbol{g}_{\beta \nu} \boldsymbol{q} - \boldsymbol{q}_{\beta} \gamma_{\nu} \right) + G_{3} \left(\boldsymbol{q}^{2} \right) \left(\boldsymbol{q}_{\beta} \boldsymbol{q}_{\nu} - \boldsymbol{q}^{2} \boldsymbol{g}_{\beta \nu} \right) \gamma_{5} \right] \boldsymbol{P}(\boldsymbol{p} + \boldsymbol{q}) \end{split}$$

the current

Δ^+ current

$$\eta^{\mu}(\mathbf{x}) = \left[\left(u^{a}\left(\mathbf{x} \right) \mathcal{C} \gamma^{\mu} u^{b}\left(\mathbf{x} \right) \right) d^{c}\left(\mathbf{x} \right) + 2 \left(u^{a}\left(\mathbf{x} \right) \mathcal{C} \gamma^{\mu} d^{b}\left(\mathbf{x} \right) \right) u^{c}\left(\mathbf{x} \right) \right] \varepsilon^{abc}$$

has non-vanishing overlap with $J^P = 1/2^-$ states

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Lorentz Structures

$$\begin{array}{rcl} \mathcal{R}_{1} & = & qp \ \gamma^{\mu} \not e \not q \gamma_{5} - ep \ \gamma^{\mu} \not q \not p \gamma_{5} + 4 \left(qp \ p^{\mu} \not e \gamma_{5} - ep \ p^{\mu} \not q \gamma_{5} \right) \\ \mathcal{R}_{2} & = & p^{2} \left(pq \ \gamma^{\mu} \not e \gamma_{5} - pe \ \gamma^{\mu} \not q \gamma_{5} \right) - 4 \left(pq \ p^{\mu} \not e \not p \gamma_{5} - ep \ p^{\mu} \not q \not p \gamma_{5} \right) \\ \mathcal{R}_{3} & = & pq \ \gamma^{\mu} \not e \gamma_{5} - pe \ \gamma^{\mu} \not q \gamma_{5} + 2 \left(p^{\mu} \not e \not q \gamma_{5} \right) - \frac{1}{2} \left(\gamma^{\mu} \not e \not q \not p \gamma_{5} \right) \\ \mathcal{R}_{4} & = & 4 \left(p^{\mu} \not e \not q \not q \gamma_{5} \right) - p^{2} \left(\gamma^{\mu} \not e \not q \gamma_{5} \right) + 2 \left(pq \ e^{\mu} \not q \gamma_{5} - pe \ q^{\mu} \not q \gamma_{5} \right) \\ \mathcal{R}_{5} & = & qp \left(\gamma^{\mu} \not e \not q \gamma_{5} \right) - q^{2} \left(\gamma^{\mu} \not e \not q \gamma_{5} \right) + 2 \left(pq \ e^{\mu} \not q \gamma_{5} - pe \ q^{\mu} \not q \gamma_{5} \right) \\ \mathcal{R}_{6} & = & \gamma^{\mu} \not e \not q \gamma_{5} - 2 \left(e^{\mu} \not q \gamma_{5} - pe \ q^{\mu} \not q \gamma_{5} \right) \\ \mathcal{R}_{7} & = & pq \ \gamma^{\mu} \not e \gamma_{5} - pe \ \gamma^{\mu} \not q \gamma_{5} - qe \ q^{\mu} \gamma_{5} \right) \\ \mathcal{R}_{8} & = & 4 \left(pq \ e^{\mu} \not q p \gamma_{5} - pe \ q^{\mu} \not q \gamma_{5} - qe \ q^{\mu} \gamma_{5} \right) \\ \mathcal{R}_{9} & = & 2 \left(q^{\mu} \not e \not p \gamma_{5} - pe \ q^{\mu} \not q \gamma_{5} \right) - qp \ \gamma^{\mu} \not e \not q p \gamma_{5} \\ \mathcal{R}_{10} & = & 4 \left(pq \ e^{\mu} \not p \gamma_{5} - pe \ q^{\mu} \not p \gamma_{5} \right) - qp \ \gamma^{\mu} \not e \not q \gamma_{5} \\ \mathcal{R}_{11} & = & q^{\mu} \not e \not q p \gamma_{5} \\ \mathcal{R}_{12} & = & q^{\mu} \not e \not q \gamma_{5} \end{array}$$

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Quantities known from experiments

$$G_{M}(0) = \frac{m_{p}}{3(m_{p} + m_{\Delta})} \left[(m_{p} + 3m_{\Delta})(m_{\Delta} + m_{p}) \frac{G_{1}(0)}{m_{\Delta}} + (m_{\Delta}^{2} - m_{p}^{2})G_{2}(0) \right]$$
$$G_{E}(0) = \frac{m_{p}}{3(m_{p} + m_{\Delta})} (m_{\Delta}^{2} - m_{p}^{2}) \left[\frac{G_{1}(0)}{m_{\Delta}} + G_{2}(0) \right]$$
$$R_{EM} = -\frac{G_{E}(0)}{G_{M}(0)}$$

(Jones & Scadron Ann. Phys 82 (1973))

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Results for G_M

J.R. Phys. Rev. D 75, 074025 (2007)

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

The Nucleon-∆-transition

Conclusions

Results for R_{EM}

exp.value : $R_{EM}(0) = -2.5 \pm 0.4\%$

LCSR result : $R_{EM}(0) = -6.4 \pm 0.8\%$

J.R. Phys. Rev. D 75, 074025 (2007)

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

- LCSR are able to handle radiative transition matrix elements
- the magnetic moment of the proton is reproduced surprisingly well, the same holds for G_M
- what can be done to improve this technique further?
 - determine the values of the non-perturbative parameters, especially χ and the twist-4 parameters more precisely
 - α_s-corrections
 - expand photon DAs from $Q^2 = 0$ to photon virtual photons

(Yu, Liu & Zhu Phys.Rev. D73 (2006))

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

The leading-twist term

$$\langle 0 | \mathcal{T}\eta_{\rho}(\mathbf{x}) \,\overline{\eta}_{\rho}(0) | 0 \rangle_{F} = -\frac{8}{\pi^{4} \mathbf{x}^{8}} \, \langle 0 | \, \gamma^{5} \mathbf{x} d^{a}(\mathbf{x}) \,\overline{d}^{a}(0) \mathbf{x}_{\gamma_{5}} | 0 \rangle_{F} + \dots$$

- use Fierz identity to decompose the Dirac matrix d^a(x)_id^a(0)_j to the Dirac basis
- upon insertion of the twist-2 photon DA we get

$$-ip^{\alpha}p_{\mu}\sigma^{\mu\nu}F_{\alpha\nu}\left[\frac{e_{d}\langle\overline{q}q\rangle}{12\pi^{2}}\chi\int_{0}^{1}du\,\varphi(u)\ln\left(\frac{\mu^{2}}{-\overline{u}p_{1}^{2}-up_{2}^{2}}\right)\right]$$

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

The leading-twist term

$$\langle 0 | \mathcal{T}\eta_{\rho}(\mathbf{x}) \,\overline{\eta}_{\rho}(0) | 0 \rangle_{F} = -\frac{8}{\pi^{4} \mathbf{x}^{8}} \langle 0 | \gamma^{5} \mathbf{x} d^{a}(\mathbf{x}) \overline{d}^{a}(0) \mathbf{x}_{\gamma_{5}} | 0 \rangle_{F} + \dots$$

use Fierz identity to decompose the Dirac matrix $d^a(x)_i \overline{d}^a(0)_j$ to the Dirac basis

upon insertion of the twist-2 photon DA we get

$$-ip^{\alpha}p_{\mu}\sigma^{\mu\nu}F_{\alpha\nu}\left[\frac{e_{d}\langle\overline{q}q\rangle}{12\pi^{2}}\chi\int_{0}^{1}du\,\varphi(u)\ln\left(\frac{\mu^{2}}{-\overline{u}p_{1}^{2}-up_{2}^{2}}\right)\right]$$

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University

The leading-twist term

$$\langle 0 | \mathcal{T}\eta_{\rho}(x) \overline{\eta}_{\rho}(0) | 0 \rangle_{F} = -\frac{8}{\pi^{4} x^{8}} \langle 0 | \gamma^{5} \not x d^{a}(x) \overline{d}^{a}(0) \not x \gamma_{5} | 0 \rangle_{F} + \dots$$

- use Fierz identity to decompose the Dirac matrix $d^a(x)_i \overline{d}^a(0)_j$ to the Dirac basis
- upon insertion of the twist-2 photon DA we get

$$-i p^{\alpha} p_{\mu} \sigma^{\mu\nu} F_{\alpha\nu} \left[\frac{e_d \langle \overline{q}q \rangle}{12\pi^2} \chi \int_0^1 du \, \varphi(u) \ln \left(\frac{\mu^2}{-\overline{u} p_1^2 - u p_2^2} \right) \right]$$

Jürgen Rohrwild

Institut for theoretical Physics Regensburg University