A Possible $\vec{H}\vec{D}$ Target for Electro-production Experiments

A.M. Sandorfi (BNL→JLab)

- *motivating factors for transversely polarized targets*
- frozen-spin $\vec{H}\vec{D}$ and performance with photon beams
- factors limiting depolarization with electrons
- advantages for transversely polarized \vec{H} and \vec{D}

Electron experiments with transversely polarized \vec{H} and \vec{D}

- DVCS, DVMP : $\Rightarrow \tilde{E} GPD \rightarrow 2+1$ dimensional tomography \rightarrow quark orbital angular momentum
- Semi-inclusive-DIS : \Rightarrow Collins function \rightarrow transverse $\vec{q}q \rightarrow Asy$ in hadron fragmentation \rightarrow transverse quark orbital angular momentum
 - \Rightarrow Sivers function \rightarrow u-d separation in $\vec{N}^{\perp} \rightarrow$ single-spin Asy
- Inclusive-DIS : $\Rightarrow g_2, A_2 PDF \rightarrow color-polarizability of the gluon field$
- N* transition form factors :

 \rightarrow constraining structure of baryons

UVa (Oxford) Transverse $N\vec{H}_3 / N\vec{D}_3$ target with CLAS BdL $\approx 4.2 \ T \times 0.3 \ m$

- large transverse field compensated by chicane
- brem γ 's peaked along incoming e at $\sim 4^{\circ}$

 $\Rightarrow "Sheet of flame"$ $<math display="block">\xrightarrow{4^0} \rightarrow$

⇒large background

• limited acceptance in θ and Q^2

Figure. The relative energy spacing of the low-lying nuclear spin (*I*) and molecular orbital angular momentum (*J*) levels in H₂, HD and D₂. The symmetries of the nuclear spin wavefunction (χ_s) are indicated.

Polarizing HD: the rotational levels of the solid hydrogens

• Rapidly polarizable levels: nuclear spin $I \neq 0$ AND orbital $J \neq 0$

Figure. The relative energy spacing of the low-lying nuclear spin (*I*) and molecular orbital angular momentum (*J*) levels in H₂, HD and D₂. The symmetries of the nuclear spin wavefunction (χ_s) are indicated.

External Magnetic field rapidly aligns $Ortho-H_2$ and $Para-D_2$ then spin-exchanges with H and D in HD

• relaxation switch – A. Honig, Phys. Rev. Lett. 19 (1967).

HD field/low-temp Polarization

- align spins with high B (15 Tesla) and low T (~12 mK)
- polarize small concentrations of J=1 H₂ and D₂
- o-H₂ and p-D₂ spin-exchanges and polarizes HD
- wait for J=1 H_2 and D_2 to decay

HD polarize/run sequence:

- condense HD gas \rightarrow liquid \rightarrow solid in 2-4 °K dewar ; *calibrate NMR*
- transfer to dilution refrigerator
 - polarize at 15 tesla and 12-16 mK
 - hold for 2-6 months, waiting for ortho- H_2 and para- D_2 to decay away
- transfer to 2-4 K dewar for polarization measurement
- transfer to In-Beam-Cryostat
 - hold target for experiment at 0.2 0.7 °K and ~0.1 to 0.9 tesla

 \Rightarrow Spin-relaxation (T₁) decay times ~ a year

HD polarize/run sequence:

- condense HD gas \rightarrow liquid \rightarrow solid in 2-4 °K dewar ; *calibrate NMR*
- transfer to dilution refrigerator
 - polarize at 15 tesla and 12-16 mK
 - hold for 2-6 months, waiting for ortho- H_2 and para- D_2 to decay away
- transfer to 2-4 K dewar for polarization measurement
- transfer to In-Beam-Cryostat
 - hold target for experiment at 0.2 0.7 °K and ~0.1 to 0.9 tesla

 \Rightarrow Spin-relaxation (T₁) decay times ~ a year

- RF transfer $P_H \rightarrow P_D$ at 0.2 °K and 0.05 tesla
- RF flip spins as needed

Increasing D polarization:

- Brute force (high B/low T) \Rightarrow P_D ~ 15% 25% (μ_D / μ_H ~ 1/3)
- 1st forbidden adiabatic fast passage (FAFP) to invert state polulations;

Zeeman levels of HD

- P_D should reach 50% (limited by NMR field uniformity) \leftarrow requires R&D

• saturating FAFP transition \rightarrow equalize { m_H = +1/2; m_D = -1, 0 } \Leftrightarrow { m_H = -1/2; m_D = 0, +1 }

 \Rightarrow P_D = 37% \leftarrow today

T6 P & D pol in QIBC

• target cell contribution can be measured and subtracted

 $E_{\gamma} = 300 \ MeV$ $\gamma + HD \rightarrow \pi^{\pm} X \qquad \qquad \gamma + H_{2} \rightarrow \pi^{+} n$

missing 2 - body energy (MeV)

Expected spin-relaxation times for appropriately prepared targets

measured (γ)

projected

B	0.89 tesla	0.01 tesla	0.40 tesla	0.04 tesla
B × dL (for L=0.12m)	0.108 tesla-m	0.001 tesla-m	0.048 tesla-m	0.005 tesla-m
orientation	solenoid	solenoid	saddle	saddle
<i>T</i> ₁ (<i>H</i>)	> 300 d	8 d	>200 d	~ 30 d
<i>T</i> ₁ (<i>D</i>)	> 500 d	55 d	>300d	~200 d

Expected spin-relaxation times for appropriately prepared targets

measured (γ)

projected

B	0.89 tesla	0.01 tesla	0.40 tesla		0.04 tesla
B × dL (for L=0.12m)	0.108 tesla-m	0.001 tesla-m	0.048 tesla-n	n ().005 tesla-m
orientation	solenoid	solenoid	saddle		saddle
<i>T</i> ₁ (<i>H</i>)	> 300 d	8 d	>200 d		~ 30 d
T ₁ (D)	> 500 d	55 d	>300d		~200 d
				NT	

compare to 1.4 T-m with NH₃/ND₃

Figure A8. Conceptual design of modified version of the BNL IBC for use in the CLAS.

Depolarization of frozen-spin $\vec{H}\vec{D}$ with electrons

• beam heating

- 5 nA of 10 GeV electrons \Rightarrow 5 mW heat in 2 cm of HD (GEANT) \approx cooling power of BNL In-Beam Cryostat at 0.5 K (can be increased)
- 4 times lower heating than FROST(Butanol), due to lower Z
- spin-relaxation time (T₁) for HD \sim a year at these temperatures

• spin-diffusion of paramagnetic centers

- *e brem* creates free radicals with randomly oriented nuclear spin; absolute number are small, but these can be *sinks* for polarization
- *spin-diffusion* time measured at 2 K: ~ 1 day for \vec{H}

~ ∞ for \vec{D} (unmeasurable in 2 weaks)

(spin-diffusion times could increase at lower T?)

Burning an RF polarization hole

2-4 °K

- cross-coil NMR
- field scan at fixed frequency

• H_o inhomogeneity \Rightarrow D-line width

 $H_o (\propto position) \rightarrow$

- field and position are correlated
- no change in the D-polarization hole after 2 weeks \Rightarrow D spin diffusion extremely slow

Potential advantages with frozen-spin transverse $\vec{H}\vec{D}$

- very low BdL (almost none for \vec{D}) \Rightarrow no "sheet of flame"
- better figure of merit

 → almost no dilution
 → small nuclear background (sampled with empty cell)
 → long Radiation Length (625 cm) ⇒ few brem γ's
- wide acceptance in θ and Q²
 → open geometry cryostat centered in CLAS(6/12)
 (but, will have to deal with low-momentum Møller electrons)

Potential advantages with frozen-spin transverse $\vec{H}\vec{D}$

- very low BdL (almost none for \vec{D}) \Rightarrow no "sheet of flame"
- better figure of merit

 → almost no dilution
 → small nuclear background (sampled with empty cell)
 → long Radiation Length (625 cm) ⇒ few brem γ's
- wide acceptance in θ and Q²
 → open geometry cryostat centered in CLAS(6/12)
 (but, will have to deal with low-momentum Møller electrons)

caveat:

 $e + \vec{H} \vec{D}$ test is necessary to verify polarization retention with electrons

Extras

Ortho \Leftrightarrow *para decays generate heat, which must be removed to polarize*

 HD condensed into target cell with ~ 2000 50 μm Al cooling wires soldered into 60 holes in copper cooling ring

• Composition of a standard target cell with 4 cm of HD (0.9 moles):

Material	gm/cm ²	mass fraction
HD	0.735	77%
Al	0.155	16%
CTFE	0.065	7 %
(C_2ClF_3)		

Frozen-Spin $\vec{H} \vec{D}$ - summary

- pure target, high nucleon polarizations
- very low-background cell contains only unpolarizable nucleons (20%) ⇔ conventional empty-cell subtractions
- \Rightarrow E06-101 HD figure of merit > 20 × FROST(C₄H₉OH)
- *in-γ-beam life-times* > *year*
- RF moves spins $\vec{H} \Leftrightarrow \vec{D}$ as needed
- In-Beam Cryostat centered in CLAS; open acceptance at back angles
- developed at BNL/LEGS; migrating to JLab

Table A2. Factors contributing to the systematic error on target polarization.

Source	δP (H)	δP(D)
thermal equilibrium calibration		
- noise, temperature, bkg,	0.9%	1.0%
frozen-spin measurement		
- white noise	0.4%	2.0%
- holding field noise	0.5%	0.5%
- non-linearities, homogeneity,	1.0%	1.0%
calibration transfer		
- circuit drift, differential ramp	1.6%	1.6%
- Lock-in gain differential error	2.8%	2.8%
- cold-transfer loss	1.0%	1.0%

Total fractional error:	3.7%	4.2%
-------------------------	------	------