A Possible HD Target for Electro-production Experiments

A.M. Sandorfi
(BNL—JLab)

motivating factors for transversely polarized targets
 frozen-spin HD and performance with photon beams
e factors limiting depolarization with electrons

* advantages for transversely polarized H and D
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Electron experiments with transversely polarized H and D

 DVCS, DVMP
= E GPD — 2+1 dimensional tomography
—> quark orbital angular momentum

e Semi-inclusive-DIS :
= Collins function — transverse gq — Asy in hadron fragmentation

— transverse quark orbital angular momentum

= Sivers function — u-d separation in Nt 5 single-spin Asy

e Inclusive-DIS :
= g, A, PDF —> color-polarizability of the gluon field

e N*transition form factors :
—> constraining structure of baryons



UVa (Oxford) Transverse NFI3 / Nl_j3 target with CLAS
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Polarizing HD: the rotational levels of the solid hydrogens
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Figure. The relative energy spacing of the low-lying nuclear spin (/) and
molecular orbital angular momentum (J) levels in H,, HD and D,. The
symmetries of the nuclear spin wavefunction () are indicated.



Polarizing HD: the rotational levels of the solid hydrogens

* Rapidly polarizable levels: nuclear spin 1#0 AND orbital J#0
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Figure. The relative energy spacing of the low-lying nuclear spin (/) and
molecular orbital angular momentum (J) levels in H,, HD and D,. The

symmetries of the nuclear spin wavefunction () are indicated.



External Magnetic field rapidly aligns Ortho-H;, and Para-D,
then spin-exchanges with H and D in HD
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« relaxation switch — A. Honig, Phys. Rev. Lett. 19 (1967).



HD field/low-temp Polarization

e align spins with high B (15 Tesla)
and low T (~12 mK)

e polarize small concentrations of
J=1H, and D,

* 0-H, and p-D, spin-exchanges and
polarizes HD

e wait for J=1 H, and D, to decay
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HD polarize/run sequence:
« condense HD gas — liquid — solid in 2-4 °K dewar ; calibrate NMR

e transfer to dilution refrigerator
- polarize at 15 tesla and 12-16 mK
- hold for 2-6 months, waiting for ortho-H, and para-D; to decay away

« transfer to 2-4 K dewar for polarization measurement

e transfer to In-Beam-Cryostat
- hold target for experiment at 0.2 — 0.7 °K and ~0.1 to 0.9 tesla

= Spin-relaxation (T;) decay times ~ a year
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HD polarize/run sequence:
« condense HD gas — liquid — solid in 2-4 °K dewar ; calibrate NMR

e transfer to dilution refrigerator
- polarize at 15 tesla and 12-16 mK
- hold for 2-6 months, waiting for ortho-H, and para-D; to decay away

« transfer to 2-4 K dewar for polarization measurement

e transfer to In-Beam-Cryostat
- hold target for experiment at 0.2 — 0.7 °K and ~0.1 to 0.9 tesla

= Spin-relaxation (T;) decay times ~ a year

- RF transfer Py — Pp at 0.2 °K and 0.05 tesla

- RF flip spins as needed



Increasing D polarization:

» Brute force (high B/low T) = Pp~15% - 25% (Lo / uy ~ 1/3)
« 1% forbidden adiabatic fast passage (FAFP) to invert state polulations;

Zeeman levels of HD

M= -1 mD=0
. my = -1/2 mp = +1
- polarize H ‘ Fa .
PH //, /// =
- RF transfer L’ o B
P(H) - P(D) | | .
my = +1/2 &
PD >

- Pp should reach 50% (limited by NMR field uniformity) « requires R&D

e saturating FAFP transition
— equalize { my=+1/2; mp=-1,0} & {my=-1/2; mp=0, +1}

= Pp =37% < today

Increasing D polarization_May07
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* target cell contribution can be measured and subtracted

E, =300 MeV
v+ HD - 7" X y+H,>7n" n
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Expected spin-relaxation times for appropriately prepared targets

measured () projected
B 0.89 tesla 0.01 tesla 0.40 tesla 0.04 tesla
BXxdL 1 108 tesia-m | 0.001 tesla-m | 0.048 tesla-m | 0.005 tesla-m
(for L=0.12m)
orientation solenoid solenoid saddle saddle
T:,(H) > 300 d 8d >200d ~ 30d
T,D) > 500d 55d >300d ~200 d

Expected T1 w saddle




Expected spin-relaxation times for appropriately prepared targets

measured () projected
B 0.89 tesla 0.01 tesla 0.40 tesla 0.04 tesla
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Figure A8. Conceptual design of modified version of the BNL IBC for use in the CLAS.



Depolarization of frozen-spin H D with electrons

 beam heating

- 5nA of 10 GeV electrons = 5 mW heat in 2 cm of HD (GEANT)
~ cooling power of BNL In-Beam Cryostat at 0.5 K (can be increased)

- 4 times lower heating than FROST(Butanol), due to lower Z
- spin-relaxation time (T;) for HD ~ a year at these temperatures

* spin-diffusion of paramagnetic centers

- e brem creates free radicals with randomly oriented nuclear spin;
absolute number are small, but these can be sinks for polarization

- spin-diffusion time measured at 2 K:  ~ 1 day for H

~ oo for D (unmeasurable in 2 weaks)

(spin-diffusion times could increase at lower T ?)



Burning an RF polarization hole

e cross-coil NMR
e field scan at fixed frequency _ 2-4 °K
0.08 T
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* H,inhomogeneity = D-line width H, (< position) —

 field and position are correlated

* no change in the D-polarization hole after 2 weeks = D spin diffusion extremely slow

RF hole in D NMR



Potential advantages with frozen-spin transverse HD

e verylow BdL (almost none for D)
= no “sheet of flame”

e better figure of merit
— almost no dilution
— small nuclear background (sampled with empty cell)
— long Radiation Length (625 cm) = few brem y’s

e wide acceptance in 0 and Q°

— open geometry cryostat centered in CLAS(6/12)
(but, will have to deal with low-momentum Moller electrons)



Potential advantages with frozen-spin transverse HD

e verylow BdL (almost none for D)
= no “sheet of flame”

e better figure of merit
— almost no dilution

— small nuclear background (sampled with empty cell)
— long Radiation Length (625 cm) = few brem y’s

e wide acceptance in 0 and Q°

— open geometry cryostat centered in CLAS(6/12)
(but, will have to deal with low-momentum Moller electrons)

caveat:

e+ H D test is necessary to verify polarization retention with electrons




Extras



Ortho < para decays generate heat, which must be removed to polarize

e HD condensed into target cell
with ~ 2000 50 um Al cooling

wires soldered into 60 holes in
copper cooling ring

. o) .
Material | gm/cm” | mass fraction

e Composition of a standard target HD 0.735 77%
cell with 4 cm of HD (0.9 moles):

Al 0.155 16%

CTFE 0.065 7 %

(C,CIF»)

LEGS tgt cell



Frozen-Spin HD - summary
 pure target, high nucleon polarizations

* very low-background - cell contains only unpolarizable nucleons (20%)
& conventional empty-cell subtractions

= E06-101 HD figure of merit > 20 x FROST(C,H,OH)
* in-ybeam life-times > year
* RF moves spins H < D as needed

 In-Beam Cryostat centered in CLAS, open acceptance at back angles

e developed at BNL/LEGS, migrating to JLab



Table A2. Factors contributing to the systematic error on target polarization.

Source SP(H) oP(D)

thermal equilibrium calibration

- noise, temperature, bkg, ... 0.9% 1.0%

frozen-spin measurement

- white noise 0.4% 2.0%
- holding field noise 0.5% 0.5%
- non-linearities, homogeneity,... 1.0% 1.0%

calibration transfer

- circuit drift, differential ramp 1.6% 1.6%
- Lock-in gain differential error 2.8% 2.8%
- cold-transfer loss 1.0% 1.0%

Total fractional error: 3.7% 4.2%






