Exclusive Electroproduction of π^0 **Mesons**

A.N. Villano (RPI) villaa@jlab.org

Rensselaer Polytechnic Institute

Overview

- Physical motivations
- Brief experimental overview
- Backgrounds, corrections, and data exclusions
- Differential cross sections

Exciting the Δ **in E01-002**

• Kinematic variables $Q^2 = 6.3 \text{ GeV}^2$; 7.4 GeV² $W = \text{Elastic} \rightarrow 1.8 \text{ GeV}$

- Single photon exchange
- Full angular coverage in COM

Center of Mass Kinematics

Center of Mass Cross Section

The cross section can be written in the center of mass :

$$\frac{d\sigma}{dQ^2 dW d\Omega_{cm}} = \Gamma \frac{d\sigma_{\nu}}{d\Omega_{cm}}$$

• The virtual photon flux factor Γ relates to kinematic quantites in center of mass

$$\Gamma = \frac{\alpha}{2\pi} \frac{E'}{E} \frac{W^2 - m_p^2}{2m_p Q^2} \frac{1}{1 - \epsilon}$$
$$\epsilon = \frac{1}{1 + 2\tan^2\left(\frac{\theta_e}{2}\right) \frac{|\vec{q}|^2}{Q^2}}$$

- In virtual photoproduction one may have
 - virtual photons having "mass"
 - virtual photons having longitudinal polarization states

Virtual Photoproduction

Virtual photoproduction amplitude can be written

$$\mathcal{M}_{ph} = \epsilon_{\mu}^{\lambda} \langle h_f | J_{had}^{\mu} | h_i \rangle$$
$$\frac{d\sigma}{d\Omega_{cm}} = \sigma_T + \epsilon \sigma_L + \epsilon \sigma_{TT} \cos 2\phi^* + \sqrt{\frac{\epsilon(1+\epsilon)}{2}} \sigma_{LT} \cos \phi^*$$

Current Decomposition

Current matrix element from virtual photoproduction amplitude can be decomposed

$$\langle p'M|J_{had}^{\mu}|p\rangle = i\bar{u}_{f}(p'_{p})\gamma_{5} \left[\gamma^{\mu} \not \!\!\!/ B_{1} + (p_{p} + p'_{p})^{\mu}B_{2} + p_{p}^{\mu}B_{3} + q^{\mu}B_{4} + \gamma^{\mu}B_{5} + (p_{p} + p'_{p})^{\mu} \not \!\!/ B_{6} + q^{\mu} \not \!\!/ B_{7} + p_{p}^{\mu} \not \!\!/ B_{8} \right] u_{i}(p_{p})$$

Q Scalar functions B_i can be expressed in terms of multipole expansions

$$B_1 \propto \sum_{l \ge 0} \left[(lM_{l+} + E_{l+})P'_{l+1} + ((l+1)M_{l-} + E_{l-})P'_{l-1} \right]$$

Quantum numbers l and \pm specify $J = |l \pm \frac{1}{2}|$ in final state

Multipoles from Atomic Physics

Wave function of incident photon can be decomposed as vector spherical harmonics

$$\mathbf{Y}_{\bar{l}LM} = \sum_{\nu} C(1\lambda, \bar{l}\nu | LM) \hat{e}_{\lambda} Y_{\bar{l}\nu}$$

- EL (electric) and CL (coulomb) type radiation are made of parity even combinations and ML (magnetic) is parity odd
- Since angular momentum is conserved one has $J = |l \pm \frac{1}{2}| = |L \pm \frac{1}{2}|$
- Parity arguments can then give the following relations EL, CL : |L - l| = 1ML : L = l

The Atomic Analog

Resonance Production (Δ)

- \bullet Restriction to Δ decreases the number of independent functions to three
- Functions can be represented:

 $G^{\pm,0} = \frac{1}{2M} \langle (\Delta), \lambda_{res} | \epsilon^{\pm,0}_{\mu} J^{\mu}_{had} | P, \lambda_p = \pm \frac{1}{2} \rangle$

Multipole Definition

 $\hfill \hfill \hfill$

 $A_{\frac{1}{2}} \propto G^+$ $A_{\frac{3}{2}} \propto G^ S_{\frac{1}{2}} \propto G^0$

• Also These can be related (through $E_{l\pm}$ and $M_{l\pm}$) to E2 and M1:

$$A_{\frac{1}{2}} = -\frac{1}{2}(M1 + 3E2)$$
$$A_{\frac{3}{2}} = \frac{\sqrt{3}}{2}(E2 - M1)$$
$$S_{\frac{1}{2}} = -C2$$

Measurement and Prediction

- Measured Quantities
 - E_{1+} , M_{1+} and S_{1+} extracted for Δ
 - Above used to infer information about $\frac{E2}{M1}$
- Predictions
 - Perturbative QCD predicts that $\frac{E2}{M1} \rightarrow 1$ as Q^2 becomes large
 - Constituent quark model predicts M1 dominance because Δ transition is viewed as a simple spin flip excitation

Particle Selection

- Clean separation of p and π^+ events
- Enough π^+ events for $\gamma^* p \to n \pi^+$

Baryon Resonances

- The $\Delta(1232)$ and S_{11} resonances are clearly correlated with the π^0 and ηM_x^2 peaks
- The elastic events clearly come from lower W with some overlap into a higher W region due to pre or post radiation
- The *w* meson comes from the largest *W* region for the experiment

Exclusive Studies

- The M_x^2 peaks can be used to constrain the reaction and/or baryon resonance
- The M_x^2 resolution for the π^0 allows detailed study of the reaction ${}^1H(e,e'p)\pi^0$
- Exclusive cross sections and amplitudes will be compared to models and previous data

Accidental Corrections

- Use the beam structure away from coincidence proton peak
- Extract angular distribution by above cut and subtract
- Low momentum hadrons dominate beam structure

Elastic Radiative

- Above example for $-1.0 \le \cos \theta^* < -.6$
- For lowest $\cos \theta^*$ elastic radiative concentrated
- Use same form for other $\cos \theta^*$ bins

Full Angular Coverage

- Uniform coverage in the center of mass angles
- All W plotted
- Elastic radiative cut removes bad $\phi^* = 0$ data

W=1.172 GeV ; 30 MeV Bin ; Q^2 =6.3

W=1.202 GeV; 30 MeV Bin; $Q^2=6.3$

$W=1.232 \text{ GeV}; 30 \text{ MeV Bin}; Q^2=6.3$

W=1.262 GeV; 30 MeV Bin; $Q^2=6.3$

W=1.292 GeV ; 30 MeV Bin ; Q^2 =6.3

Exclusive Cross Section

2007 Exclusive Reactions Workshop, 23 May 2007 - p.2

Summary and Progress

- Beam energy of 5.5 GeV with two Q^2 settings
 - Measure the cross sections for ${}^{1}H(e,e'p)X$, $X = \{\pi^{0},\eta,\omega\}$
 - X identified by missing mass, M_x
 - Q^2 of 6.3 and 7.7 GeV for Δ resonance
 - Varied proton arm angle and momentum to cover wide range of θ^* and ϕ^* bins for W up to 2GeV
- Physics
 - Showed angular distributions for low Q^2
 - Distributions will be fit though it is not clear that the pure Δ multipoles will show
 - Systematic uncertainties need to be brought under control