e⁺e⁻ Annihilations into Quasi-two-body Final States at 10.58 GeV

Kai Yi, SLAC for the BaBar Collaboration

Jefferson Lab, May 23, 2007

STANFORD LINEAR ACCELERATOR CENTE

5/23/2007

Kai Yi, BaBar/SLAC

1

Outline

- Introduction
- First Observation of positive C parity hadronic final states in the reactions e⁺e⁻→p⁰p⁰, \phip⁰
- Observation of $e^+e^- \rightarrow \phi \eta$ (C=-1 final state)
- First Observation of $e^+e^- \rightarrow \rho^+\rho^-$ (C=-1?)
- Summary and Outlook

Introduction—General Information

Hadronic cross section in e^+e^- Collisions

The design goal of the B factory is the study of B physics.

However, at $\sqrt{s} \sim 10.6 \text{ GeV}$, $\sigma(e^+e^- \rightarrow hadrons) \sim 3 \text{ nb and } < N_{ch} > \sim 8$

Large integrated luminosity (~500 fb⁻¹) \Rightarrow can study low-multiplicity exclusive hadronic processes with σ values ~fb; this provides tests of QCD at the amplitude level.

Today's talk makes use of: $\int \mathcal{I} \sim 343$ fb⁻¹ @10.58 GeV (OnPeak); $\int \mathcal{I} \sim 36$ fb⁻¹ @10.54 GeV (OffPeak)

Introduction—Possible Processes at B Factories

A subset of $e^+e^- \rightarrow q$ q processes; $e^+e^- \rightarrow M_1 M_2$ can also be studied via ISR Excellent test ground for QCD Two-Virtual-Photon-Annihilation, TVPA; new observation at BaBar

Select events with invariant mass of $(K^+K^-\pi^+\pi^-/\pi^+\pi^-\pi^+\pi^-)$ within 170 MeV of c.m. energy.

PRL 97, 112002 (2006)

Only one entry in the $\pi^+\pi^-\pi^+\pi^$ region of interest out of two possible combinations (no ambiguity)

Use binned log-likelihood fit over 9 tiles to extract signal

signal tiles: 0.5<m_{ππ}<1.1 GeV/c² (ρ) 1.008<m_{κκ}<1.035 GeV/c²(φ) 5/23/2007

Observation of e⁺e⁻ $\rightarrow \rho^0 \rho^0 / \phi \rho^0$ (C=+1)

Observation of e⁺e⁻ $\rightarrow \rho^0 \rho^0 / \phi \rho^0$ (C=+1)

The extracted signals:

	All Events		Yield @ 10.58 GeV	Yield @ 10.54 GeV	Expected continuum @ 10.56 GeV	
	Yield	significance			(from ∫∑ ratio)	
$ ho^0 ho^0$	1243±43	>> 5 <i>o</i>	1138± 42	104± 14	112 <i>±</i> 4	
ϕho^0	147±13	>> 5 <i>o</i>	135± 13	14 <u>+</u> 4	13± 1	
	appointent					

consistent

Y(4S) production cannot contribute because of C parity conservation. The yields are consistent with continuum production

Signals large enough to analyze the angular distributions and investigate the production mechanism of these events.

5/23/2007

Observation of e⁺e⁻ $\rightarrow \rho^0 \rho^0 / \phi \rho^0$ (C=+1)

Efficiency-corrected projections

Production angle θ^* -polar angle of ϕ or ρ_{forward} in CM consistent with expectation for TVPA

 $-1+\cos^2\theta^*$ for comparison

Helicity angle $\theta_{\rm H}$ —the angle between daughter and recoil in the mother rest frame

 $sin^2 \theta_H$ distributions

All angular distributions are consistent with TVPA expectation for quasi-real photons

Observation of e⁺e⁻ $\rightarrow \rho^0 \rho^0 / \phi \rho^0$ (C=+1)

We observe $e^+e^- \rightarrow C=+1$ exclusive hadronic final states and angular analyses support TVPA production

For 1.008< m_{ϕ} <1.035 GeV and 0.5< m_{ρ} <1.1 GeV (|cos θ^* |<0.8); the cross sections are:

$\sigma(\rho^0 \rho^0)=20.7\pm0.7$ (stat) ±2.7 (syst) fb	re
$\sigma(\phi ho^0)$ =5.7 \pm 0.5(stat) \pm 0.8(syst) fb	σ(

reminder: σ (e⁺e⁻ \rightarrow hadrons @10 GeV) ~ 3 nb

 Theory calculations (after the measurement) consistent with our results:

 hep-ph/0606155
 PRD 74 074012,2006

 $\sigma(\rho^0 \rho^0) =$ 21.4±0.7
 17.7±0.6
 fb

 $\sigma(\phi \rho^0) =$ 6.0±0.1
 5.6±0.2
 fb

Extending our results to low energy, the TVPA contribution to muon (g-2) is small; this removes a possible uncertainty source in the g-2 calculation (hep-ph/0606155)

Observation of e⁺e⁻ $\rightarrow \phi \eta$ at ~10.6 GeV **BABAR** PRD (RC) 74, 11103(2006)

 $e^+e^- \rightarrow \phi \eta$ is analogous to $e^+e^- \rightarrow J/\psi \eta_c$ (η has s-sbar content) Interesting because observed $\sigma(e^+e^- \rightarrow J/\psi \eta_c)$ 10X higher than QCD predictions

- Provides information on s-dependence by combining with a CLEO measurement at lower energy
- Selection procedures similar to those for $e^+e^- \rightarrow \rho^0 \rho^0 / \phi \rho^0$ final states

We see $\phi\eta$ correlation.

Use a two-dimensional log-likelihood fit to extract signal: P-wave relativistic Breit-Wigner for ϕ ; Gaussian resolution function for η

Observation of e⁺e⁻ $\rightarrow \phi \eta$ at ~10.6 GeV

Yield for $1.008 < m_{\phi} < 1.035 \text{ GeV/c}^2$, and $0.4 < m_{\gamma\gamma} < 0.8 \text{ GeV/c}^2$:

All data: 24±5 events @10.58 GeV: 20±5 @10.54 GeV: 3±2

Significance: 6.5 σ

U.L. for BF of Y(4S) decay @90% CL based on -10 ± 21 events: 2.5X10⁻⁶

Observation of e⁺e⁻→φη at ~10.6 GeV

The full angular distribution, assuming one-virtual-photon production, is given by:

 $\frac{dN}{d\cos\theta^* d\cos\theta_{\phi} d\varphi_{\phi}} \propto \sin^2\theta_{\phi} (1+\cos^2\theta^* + \cos 2\varphi_{\phi} \sin^2\theta^*)$

Projections:

$$\frac{dN}{d\cos\theta^*} \propto (1+\cos^2\theta^*)$$
$$\frac{dN}{d\cos\theta_\phi} \propto \sin^2\theta_\phi$$
$$\frac{dN}{d\varphi_\phi} \propto (2+\cos 2\varphi_\phi)$$

 θ^* : polar angle in c.m.

 θ_{ϕ} : ϕ helicity angle

 φ_{ϕ} : azimuthal angle of the decay plane ϕ w.r.t. production plane normal in the c.m. frame

Distributions in data are consistent with predictions within limited statistics

We weight isotropic MC angular distributions as above for efficiency estimation.

Observation of e⁺e⁻→φη at ~10.6 GeV

For 1.008<m $_{\phi}$ <1.035 GeV/c² and |cos θ^* |<0.8, the cross section after radiative corrections is measured as:

 $\sigma(\phi\eta)=2.1\pm0.4$ (stat) ±0.1 (syst) fb

Extending to $(|\cos\theta^*| \le 1)$ by assuming a 1+ $\cos^2\theta^*$ distribution, this becomes:

 $\sigma(\phi\eta)=2.9\pm0.5(\text{stat})\pm0.1(\text{syst}) \text{ fb}$

Combine with CLEO measurement at lower energy; 1/s³ energy dependence favored over 1/s⁴ (pQCD prediction), assuming continuum production. Another QCD puzzle?

Analysis of BaBar ISR data is ongoing; will provide improved measurement of the s dependence

Recent theory value (after the measurement) (hep-ph/0702065): σ ~3.1~4.3 fb, and 1/s³ dependence favored.

Observation of $e^+e^- \to \rho^+\rho^-$

Single photon ($J^{PC} = 1^{--}$)

In general:
C(ρ+ρ-)=(-1)^{L+S}, + or -;
P(ρ+ρ-)= (-1)^L;

Single photon production \Rightarrow L odd, S even, I(ρ + ρ -)=1(Bose Statistics).

Other possibility: Two-Virtual Photon Annihilation (C = +1) followed by FSI \rightarrow unlikely?

No angular correlation predictions

Observation of $e^+e^- \rightarrow \rho^+\rho^-$

Selection procedures similar to other final states

- Likelihood Fit in $(m_{\pi-\pi^0}, m_{\pi+\pi^0})$ plane:
- Signal function= product of P-wave relativistic BWs
- $\rho\pi\pi$ = threshold function
- Linear combinatorial background

 $\begin{array}{l} \mathsf{N} = 308 \pm 25 \text{ signal events } (> 5\sigma) \\ \sigma(e^+e^- \rightarrow \rho^+\rho^-) = (20.0 \pm 1.6 \pm 3.6 \pm 1.7) \text{ fb} \\ \text{extending to full angular range} & (\text{stat}) & (\text{syst}) & (\text{ampl}) \\ \textbf{preliminary} \end{array}$

Observation of $e^+e^- \to \rho^+\rho^-$

Assuming one-virtual-photon production, the angular distribution projections are:

$$\frac{dN}{d\cos\theta^*} \propto \frac{3}{4} (\sin^2\theta^* |F_{00}|^2 + 2(1 + \cos^2\theta^*) |F_{10}|^2 + 2\sin^2\theta^* |F_{11}|^2)$$

$$\frac{dN}{d\cos\theta_{\pm}} \propto \frac{3}{2} (\cos^2\theta_{\pm} |F_{00}|^2 + (1 + \cos^2\theta_{\pm}) |F_{10}|^2 + \sin^2\theta_{\pm} |F_{11}|^2)$$

$$\frac{dN}{d\varphi_{\pm}} \propto \frac{1}{2\pi} (|F_{00}|^2 + (4 - \cos 2\varphi_{\pm}) |F_{10}|^2 + 2|F_{11}|^2)$$

 $\theta^{\pm} = \rho^{\pm}$ helicity angle

 ϕ^{\pm} = azimuthal angle of π in ρ frame

 $\theta^* = \text{scattering}$ angle in the CM frame

Brodsky and Lepage, PRD 24, 2848 (1981)

pQCD prediction (single γ^*):

$$|F_{10}|^2 \sim |F_{11}|^2 < 0.01 |F_{00}|^2$$

Observation of $e^+e^- \rightarrow \rho^+\rho^-$

Fit normalization constraint:

$$|F_{00}|^2 + 4|F_{10}|^2 + 2|F_{11}|^2 = 1$$

Results:

 $|F_{00}|^2 = 0.51 \pm 0.14(\text{stat}) \pm 0.02(\text{syst})$ $|F_{10}|^2 = 0.10 \pm 0.04(\text{stat}) \pm 0.01(\text{syst})$ $|F_{11}|^2 = 0.04 \pm 0.03(\text{stat}) \pm 0.00(\text{syst})$

|F₀₀|² ≠ 1

$$\sigma(e^+e^- \rightarrow \rho^0 \rho^0) > \sigma(e^+e^- \rightarrow \rho^+ \rho^-)$$

No evidence for Y(4S) $\rightarrow \rho \rho$

Are we seeing TVPA + FSI?

Combine with ongoing ISR analysis to measure s dependence of the cross section of the individual amplitudes.

Summary and Outlook

At BaBar we have:

• Made the first observations of the TVPA hadronic processes: $e^+e^- \rightarrow \rho^0 \rho^0$ and $e^+e^- \rightarrow \phi \rho^0$

and measure their cross sections and angular distributions

- Observed the process $e^+e^- \rightarrow \phi \eta$ and measured the cross section; this provides an interesting test of the QCD prediction of the energy dependence, assuming continuum production.
- Observed the process $e^+e^- \rightarrow \rho^+ \rho^-$ and measured the cross section; the measured amplitudes contradict the pQCD expectation at 3.5 σ , assuming single photon production.

We plan to use the high integrated luminosity at BaBar to investigate other interesting low-multiplicity exclusive final states in the near future! The corresponding ISR data will enable us to measure s-dependence and compare to QCD predictions.

5/23/2007

Data input and physics output

5/23/2007