

Andrea Bressan, Trieste INFN, INFN Trieste and CERN Nicole d'Hose, Saclay CEA/DAPNIA JLab, 24 May 2007 on behalf of the COMPASS Collaboration

<u>Outline</u>

- The COMPASS experiment
- Results on:
 - Collins/Sivers asymmetries
 positive and negative hadrons
 π[±], K[±]
 - two identified hadron asymmetries
 ππ, πK, KK

other Transv. Mom. Dependent (TMD) asymmetries

COMPASS spectrometer

SIDIS kinematics

Nicole d'HOSE

MPAS

the COMPASS target system

2002-2004: ⁶LiD dilution factor f = 0.38 polarization P_T = 50% ~20% of the time transversely polarised

during data taking with transverse polarization

- dipole field always 🛧
- polarization reversal in the
 - 2 cells after ~ 5 days

transversity **DF**

q=u_v, d_v, q_{sea} quark with **spin** parallel to the nucleon spin in a transversely polarised nucleon

Properties:

- probes the relativistic nature of quark dynamics
- no contribution from the gluons \rightarrow simple Q² evolution
- first moments: tensor charge..... $\Delta_T q \equiv \int dx \ \Delta_T q(x)$
- sum rule for transverse spin
 in Parton Model framework......
- it is related to GPD's
- is chiral-odd: decouples from inclusive DIS

$$\frac{1}{2} = \frac{1}{2} \sum \Delta_T q + L_q + L_g$$

Bakker, Leader, Trueman, PRD 70 (04)

Nicole d'HOSE

the Transversity DF is chiral-odd:

 \rightarrow survives only by the product with another chiral-odd function

can be measured in SIDIS on a transversely polarised target via "quark polarimetry"

$\ell N^{\uparrow} \rightarrow \ell' h X$	Collins Asymmetry (Collins FF)	
$\ell N^{\uparrow} \rightarrow \ell$ 'hh X	Two hadrons asymmetry (Interference FF)	
$\ell N^{\uparrow} \rightarrow \ell' \Lambda X$	Λ polarization (FF of q [↑] → $Λ$)	

single hadron asymmetries

Collins and Sivers terms in SIDIS cross sections depend on different combination of angles:

 ϕ_h azimuthal angle of the hadron

 ϕ_s azimuthal angle of the transverse spin of the initial quark

 $\phi_{s'}$ azimuthal angle of the transverse spin of the fragmenting quark

$$\phi_{s'} = \pi - \phi_s$$
 (spin flip)

 $\Phi_{\rm C}$ and $\Phi_{\rm S}\,$ are independent angles ightarrow independent extraction of the asymmetries

Collins effect:

a quark moving horizontally and polarized upward (downward) prefers to emit the leading meson to the left (right) side of the jet (quark direction).

i.e.

the fragmentation function of a transversely polarized quark has a spin dependent part

$$D_q^h(z,\vec{p}_T^h)=D_q^h(z,p_T^h)+\Delta_T^0 D_q^h(z,p_T^h)\times sin(\varphi_h-\varphi_{s'})$$

And the resulting measured asymmetry:

$$\mathbf{N}_{h}^{\pm}\left(\Phi_{C}\right) = \mathbf{N}_{h}^{0} \cdot \left\{ \mathbf{1} \pm \mathbf{A}_{C}^{h} \cdot \sin\Phi_{C} \right\} \qquad \Phi_{C} = \phi_{h} + \phi_{s} - \pi$$
$$\mathbf{A}_{C}^{h} = \frac{\mathbf{A}_{C}^{h}}{\mathbf{f} \cdot \mathbf{P}_{T} \cdot \mathbf{D}} = \frac{\sum_{q} \mathbf{e}_{q}^{2} \cdot \mathbf{Q}_{T} \mathbf{Q} \mathbf{Q}_{T}^{0} \mathbf{D}_{q}^{h}}{\sum_{q} \mathbf{e}_{q}^{2} \cdot \mathbf{Q} \cdot \mathbf{D}_{q}^{h}}$$

event selection

DIS cuts:

- Q² > 1
- 0.1 < y < 0.9
- W > 5 GeV/c

All hadron selection:

- z > 0.20
- p_t > 0.1

Plus for leading hadron:

- z_l > 0.25
- No signals in the CALOs from neutral particles with z > z₁

Statistics 2002 - 2004: 8.5 * 10⁶ positive hadrons 7.0 * 10⁶ negative hadrons

COLLINS asymmetries 2002-2004 data

COMPASS: 2002-2004

- only statistical errors shown (~1%),
- systematic errors considerably smaller
- small asymmetries compatible with 0 for both + and hadrons

NP B765 (2007) 31-70

- Hadron identification is based on RICH response: several studies performed on the stability in time of the detector.
- Cherenkov thresholds: π ~ 3 GeV/c

K ~ 9 GeV/c p ~ 17 GeV/c

- $2 \sigma \pi/K$ separation at 43 GeV/c
- In the leading hadron sample:
 - ~76% pions ~12% kaons

	positive	negative
leading π	3.4M	2.8M
leading K	0.7M	0.4M

COLLINS asymmetries 2003-2004 data

MP

naïve interpretation (parton model, valence region)

- from proton data (HERMES) non zero Collins asymmetry
 - → unfavored Collins FF \approx favored Collins FF

$$\Delta_T^0 D_2 \approx -\Delta_T^0 D_1$$
 at variance with unpol case

from proton: u quark dominance (d quark DF ~ unconstrained)

<u>deuteron data (COMPASS)</u> small asymmetries compatible with 0

$$A_{Coll}^{d,\pi^+} \simeq \frac{\Delta_T u_v + \Delta_T d_v}{u_v + d_v} \frac{4\Delta_T^0 D_1 + \Delta_T^0 D_2}{4D_1 + D_2}$$
$$A_{Coll}^{d,\pi^-} \simeq \frac{\Delta_T u_v + \Delta_T d_v}{u_v + d_v} \frac{\Delta_T^0 D_1 + 4\Delta_T^0 D_2}{D_1 + 4D_2}$$

→ Cancellation between $\Delta_T u(x)$ and $\Delta_T d(x)$ → Deuteron data give access to $\Delta_T d(x)$

for a global analysis of Hermes, Belle and Compass data see the works of Vogelsang and Yuan, Efremov et al., Anselmino et al.

SIVERS mechanism

- The Sivers DF $\Delta_0^T q$ is probably the most famous between TMDs...
- gives a measure of the correlation between

the transverse momentum and the transverse spin

requires final/initial state interactions

quark rescattering via soft gluon exchange

- it is related to the parton orbital angular momentum in a transverely polarized nucleon
- should change sign from SIDIS to DY $\Delta_0^T q(x,k_T^2)_{SIDIS} = -\Delta_0^T q(x,k_T^2)_{DY}$

In SIDIS:

$$\begin{split} \textbf{N}_{\textbf{h}}^{\pm} \big(\Phi_{\textbf{S}} \big) &= \textbf{N}_{\textbf{h}}^{\textbf{0}} \cdot \Big\{ \textbf{1} \pm \textbf{A}_{\textbf{S}}^{\textbf{h}} \cdot \textbf{sin} \Phi_{\textbf{S}} \Big\} \\ \\ \textbf{A}_{\textbf{Siv}} &= \frac{\textbf{A}_{\textbf{S}}^{\textbf{h}}}{\textbf{f} \cdot \textbf{P}_{\textbf{T}}} = \frac{\sum_{\textbf{q}} \textbf{e}_{\textbf{q}}^{2} \left(\textbf{\Delta}_{\textbf{0}}^{\textbf{T}} \textbf{q} \cdot \textbf{D}_{\textbf{q}}^{\textbf{h}} \right)}{\sum_{\textbf{q}} \textbf{e}_{\textbf{q}}^{2} \cdot \textbf{q} \cdot \textbf{D}_{\textbf{q}}^{\textbf{h}}} \end{split}$$

SIVERS asymmetries 2002-2004 data

only statistical errors shown (~1%), systematic errors considerably smaller
 small asymmetries compatible with 0 for both + and – hadrons

[NP B765 (2007) 31-70]

SIVERS asymmetries 2003-2004 data

Nicole d'HOSE

MPA

proton data (HERMES)

asymmetry for $\pi^+ > 0$, asymmetry for $\pi^- \approx 0$

$$A_{Siv}^{p,\pi^{+}} \simeq \frac{4\Delta_{0}^{T}u_{v}D_{1} + \Delta_{0}^{T}d_{v}D_{2}}{4u_{v}D_{1} + d_{v}D_{2}}$$

$$A_{Siv}^{p,\pi^{-}} \simeq \frac{4\Delta_{0}^{T}u_{v}D_{2} + \Delta_{0}^{T}d_{v}D_{1}}{4u_{v}D_{2} + d_{v}D_{1}}$$

→ Sivers DF for d-quark \approx - 2 Sivers DF for u-quark

$$\Delta_0^T d_v \simeq - 2 \Delta_0^T u_v$$

deuteron data (COMPASS)

$$A_{Siv}^{d,\pi^+} \simeq A_{Siv}^{d,\pi^-} \simeq \frac{\Delta_0^T u_v + \Delta_0^T d_v}{u_v + d_v}$$

the measured asymmetries compatible with zero suggest

$$\Delta_0^T d_v \simeq -\Delta_0^T u_v$$

the measured asymmetry on deuteron compatible with zero has been interpreted as

Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon S.J. Brodsky and S. Gardner, PLB643 (2006) 22

The approximate cancellation of the SSA measured on a deuterium target suggests that the gluon mechanism, and thus the orbital angular momentums carried by gluons in the nucleon, is small.

two hadrons - the coordinate system

z-axis = virtual photon direction x-z plane = lepton scattering plane

 $\vec{\mathbf{R}} = \frac{\vec{\mathbf{z}}_1 \vec{\mathbf{P}}_2 - \vec{\mathbf{z}}_2 \vec{\mathbf{P}}_1}{\vec{\mathbf{z}}_1 + \vec{\mathbf{z}}_2}$ R

(A. Bacchetta, M. Radici, hep-ph/0407345) (X. Artru, hep-ph/0207309) ϕ_R = angle between lepton scattering plane and two-hadron plane

 ϕ_S = azimuthal angle of initial quark versus lepton scattering plane

> $\phi_{S'} = \pi - \phi_{S}$ (fragmenting quark)

$$\phi_{RS} = \phi_{R} - \phi_{S'}$$
$$= \phi_{R} + \phi_{S} - \pi$$

azimuthal asymmetry for two-hadron production

Target single spin asymmetry $A_{RS}(x,z,M_h^2)$:

$$z = z_1 + z_2$$

$$N^{\pm}(\Phi_{RS}) = N_0 \left\{ 1 \pm A_{UT}^{\sin\phi_{RS}} \sin \Phi_{RS} \right\} \text{ and } A_{RS} = \frac{1}{f P_T D} A_{UT}^{\sin\phi_{RS}}$$

$$\begin{split} \mathsf{N}^{\pm}(\phi_{\mathsf{RS}}): \text{ Number of events for} \\ \text{target spin up (+) and} \\ \text{down (-)} \end{split} \begin{array}{l} \mathsf{f:} & \text{Dilution factor} \approx 0.38 \\ \mathsf{D:} & \text{Depolarisation factor} \\ \mathsf{D}=(1-y)/(1-y+y^2/2) \\ \mathsf{P}_{\mathsf{T}}: \text{ Target polarisation} \approx 0.5 \\ \mathsf{A}_{\mathsf{RS}}(\mathsf{x},\mathsf{z},\mathsf{M}_{\mathsf{h}}^2) = \frac{\sum_{\mathsf{q}} \mathbf{e}_{\mathsf{q}}^2 \, \mathsf{\Delta}_{\mathsf{T}} \mathsf{q}(\mathsf{x},\mathsf{H}_{\mathsf{q}}^{\perp \angle \mathsf{h}}(\mathsf{z},\mathsf{M}_{\mathsf{h}}^2) \\ \sum_{\mathsf{q}} \mathbf{e}_{\mathsf{q}}^2 \, \mathsf{q}(\mathsf{x}) \, \mathsf{D}_{\mathsf{q}}^{\mathsf{h}}(\mathsf{z},\mathsf{M}_{\mathsf{h}}^2) \end{split}$$

$$D_q^{\mathsf{h}}, \quad H_q^{\perp \angle \mathsf{h}}$$

presently unknown can be measured in e⁺e⁻ (BELLE) expected to depend on the hadron pair invariant mass

(X. Artru, hep-ph/0207309)

results for $\pi^+ \pi^-$ pairs (RICH identification)

results for π^+ K⁻ pairs (RICH identification)

results for K⁺ π ⁻ pairs (RICH identification)

results for K⁺ K⁻ pairs (RICH identification)

other TMDs: general expression of polarized SIDIS xSections

Azimuthal modulations: **2** polarization independent **1** single beam polarization dependent 2 single target longitudinal polarization dependent 1 double beam + target longitudinal polarization dependent **5** single target transverse polarization dependent 3 double beam + target transverse polarization dependent $\Phi_1 = \phi_h - \phi_s$ $\Phi_2 = \phi_h + \phi_s$ 5 independent $\Phi_3 = 3\phi_h - \phi_s$ angles $\Phi_4 = \phi_s$ $\Phi_5 = 2\phi_h - \phi_s$

asymmetry extraction - I

Nicole d'HOSE

asymmetry extraction - II

asymmetry extraction - III

Nicole d'HOSE

MPAS

summary and outlook

now: precise deuteron data from COMPASS are available

Collins and Sivers asymmetries h^{\pm} , π^{\pm} , K^{\pm}

Two hadron asymmetries

all other TMD SSA azimuthal asymmetries

 \rightarrow deuteron asymmetries very small, compatible with zero

→ first extractions of the u and d quark DFs

near future: COMPASS will complete the analysis of the recorded deuteron data

- K⁰ asymmetries
- exclusive ρ asymmetries on transversely polarised target \rightarrow GPD E
- transverse effects from longitudinal data
- Cahn and Boer-Mulders effect

2007: COMPASS data will be with a transversely polarised proton target (NH₃)

with 50 days, same precision at small x as for deuterium, better at "large" x for the new PT magnet

on a longer time scale: good perspective for a measurement of Drell-Yan pairs in COMPASS

and further measurements of transverse spin effects in SIDIS

transversely polarised deuteron target (⁶LiD) ~ 20% of the running time

2 periods

1 period

2 periods

2002 11 days of data taking,2003 9 days of data taking,

2004 14 days of data taking,

Beconstructed DIS Reconstructed DIS events 2002 2003 2004

trigger (large x, Q²) DAQ, on line filter

comparison with HERMES for Collins and Sivers asym

HERMES data from `Transversity results from HERMES', L.Pappalardo et al., to appear in the proceedings of the XIV International Workshop on Deep Inelastic Scattering, Tsukuba city, Japan, April 20-24, 2006.,

courtesy of the HERMES Collaboration

MPAS

SIVERS mechanism

- The Sivers DF $\Delta_0^T q$ is probably the most famous between TMDs...
- gives a measure of the correlation between the transverse momentum and the transverse spin
- requires final/initial state interactions of the struck quark with the spectator system and the interference between different helicity Fock states to survive time-reversal invariance
- Time-reversal invariance implies:

$$\Delta_0^{\mathsf{T}}q(\mathbf{x},\mathbf{k}_{\mathsf{T}}^2)_{SIDIS} = -\Delta_0^{\mathsf{T}}q(\mathbf{x},\mathbf{k}_{\mathsf{T}}^2)_{DY}$$

...to be checked

 N_{h}^{\pm}

• In SIDIS:

$$\Phi_{s} = N_{h}^{0} \cdot \left\{ 1 \pm A_{s}^{h} \cdot \sin \Phi_{s} \right\}$$

$$P_{roton}$$

$$A_{siv} = \frac{A_{s}^{h}}{f \cdot P_{T}} = \frac{\sum_{q} e_{q}^{2} (\Delta_{0}^{T} q) D_{q}^{h}}{\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{h}}$$

current quark jet

final state interaction

spectato system

quark

event selection for 2 hadrons

DIS cuts:

- Q² > 1 GeV²/c²
- 0.1 < y < 0.9
- W > 5 GeV/ c^2

Hadron selection:

- $z_{1,2} > 0.1$ (current fragmentation)
- x_{F1,2} > 0.1
- $z = z_1 + z_2 < 0.9$ (exclusive rho)
- RICH identification of π, K

RICH hadron identification

Nicole d'HOSE

MP 🔊

sinθ dependance

Cross section σ_{UT} for two- π fragmentation depends on sin θ : (Interference of s- and p-wave of the 2π -state)

$$\sigma_{UT} \propto \sum_{q} e_{q}^{2} |S_{T}| sin\theta sin\phi_{RS} \Delta_{T} q(x) H_{q}^{\perp \ge h}(z, M_{h}^{2})$$

→ small contribution in the kinematic region of COMPASS

Nicole d'HOSE

asymmetry extraction

The number-of-events	$A_{UT, raw}^{w_i(\phi_h, \phi_s)} = D^{w_i(\phi_h, \phi_s)}(y) f S_T A_{UT}^{w(\phi_h, \phi_s)}, (i = 1, 5),$			
asymmetries	$A_{LT, raw}^{w(\phi_h, \phi_s)} = D^{w(\phi_h, \phi_s)}(y) f P_{beam} S_T A_{LT}^{w(\phi_h, \phi_s)}, (i = 6, 8)$			
Independent angles	$\Phi_1 = \phi_h - \phi_s$ $\Phi_2 = \phi_h + \phi_s$ $\Phi_3 = 3\phi_h - \phi_s$ $\Phi_4 = \phi_s$ $\Phi_5 = 2\phi_h - \phi_s$			
Azimuthal modulations	$W_{1}(\Phi_{1}) = A_{raw}^{w_{1}(\phi_{h},\phi_{s})} \sin(\Phi_{1}) + A_{raw}^{w_{6}(\phi_{h},\phi_{s})} \cos(\Phi_{1})$ $W_{2}(\Phi_{2}) = A_{raw}^{w_{2}(\phi_{h},\phi_{s})} \sin(\Phi_{2})$ $W_{3}(\Phi_{3}) = A_{raw}^{w_{3}(\phi_{h},\phi_{s})} \sin(\Phi_{3})$ $W_{4}(\Phi_{4}) = A_{raw}^{w_{4}(\phi_{h},\phi_{s})} \sin(\Phi_{4}) + A_{raw}^{w_{7}(\phi_{h},\phi_{s})} \cos(\Phi_{4})$ $W_{5}(\Phi_{5}) = A_{raw}^{w_{5}(\phi_{h},\phi_{s})} \sin(\Phi_{5}) + A_{raw}^{w_{8}(\phi_{h},\phi_{s})} \cos(\Phi_{5})$			

transversity from Λ polarimetry

Nicole d'HOSE

Λ polarimetry

systematic errors not larger than statistical errors

MPA