

Studies of TMDs at HERMES

Luciano Pappalardo pappalardo@fe.infn.it (for the HERMES Collaboration)

JLAB, Newport News, Virginia USA, May 18-21 2010

Quantum phase-space tomography of the nucleon

Longitudinal momentum structure of the nucleon

Quantum phase-space tomography of the nucleon

Longitudinal momentum structure of the nucleon

Join the real 3D experience!!

3D picture in coordinate space

0.6

0.4

0.2

-0.2

-0.4

_{-0.6} up

0

b_y [fm]

3D picture in momentum space

The nucleon spin structure at leading twist

Legenda (courtesy of A. Bachetta):

Proton comes out of the screen photon goes into the screen

nucleon with transverse or longitudinal spin

• functions in black survive integration over transverse momentum

parton with transverse or longitudinal spin

The nucleon spin structure at leading twist

Legenda (courtesy of A. Bachetta):

Proton comes out of the screen photon goes into the screen

nucleon with transverse or longitudinal spin

parton with transverse or longitudinal spin

parton transverse momentum

- $\boldsymbol{\cdot}$ functions in black survive integration over transverse momentum
- functions in red are naive T-odd
- functions in green box are chirally odd

functions in green box are chirally odd

The SIDIS cross section up to twist-3

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos\phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin\phi \, d\sigma_{LU}^{3}$$

$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin\phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos\phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+ S_{T} \left\{ \sin(\phi - \phi_{s}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{s}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s}) \, d\sigma_{UT}^{10} \right\}$$

$$+ \frac{1}{Q} \sin(2\phi - \phi_{s}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin\phi_{s} d\sigma_{UT}^{12}$$

$$+ \lambda_{e} \left[\cos(\phi - \phi_{s}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos\phi_{s} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{s}) d\sigma_{LT}^{15} \right] \right\}$$

How can we disentangle all these contributions ?

EXPERIMENT: setting the proper beam and target polarization states (U, L, T)

ANALYSIS: e.g. fitting the cross section asymmetry for opposite spin states and extracting the relevant Fourier amplitudes based on their peculiar azimuthal dependences.

The Boer-Mulders effectTwist-2: $d\sigma_{UU}^{Cos2\phi} \propto \cos 2\phi \cdot \sum_{q} e_q^2 I \left[\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_T)(\hat{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} \frac{h_1^{\perp} H_1^{\perp q}}{MM_h} \right]$ Cahn effectBoer-Mulders effectTwist-3: $d\sigma_{UU}^{Cos\phi} \propto \cos \phi \cdot \sum_{q} e_q^2 \frac{2M}{Q} I \left[-\frac{(\hat{P}_{h\perp} \cdot \vec{p}_T)}{M_h} x \frac{h_1^{\perp} H_1^{\perp q}}{M_h} - \frac{(\hat{P}_{h\perp} \cdot \vec{k}_T)}{M} x f_1 D_1 + \dots \right]$

Accessed through azimuthal modulations in SIDIS with unpol. H and D targets

The Boer-Mulders effect

Accessed through azimuthal modulations in SIDIS with unpol. H and D targets

analysis based on a **multidimensional unfolding** of data to correct for acceptance, detector smearing and higher order QED effects

	BINNING							
	9	00 kine	matica	l bins x	: 12 φ _η -Ι	oins		
Variable			E	Bin limits				#
х	0.023	0.042	0.078	0.145	0.27	0.6		5
У	0.2	0.3	0.45	0.6	0.7	0.85		5
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
Pt	0.05	0.2	0.35	0.5	0.7	1	1.3	6

The Boer-Mulders effect (Hydrogen target)

 $\left| \left\langle \cos(\phi) \right\rangle_{UU} \propto \mathrm{I}[-h_1^{\perp}H_1^{\perp} - f_1D_1] \right|$ $negative \ \cos(\phi) \ amplitudes$ for both π^+ and π^-

and slightly negative for π^-

Similar results for D target

The Boer-Mulders effect (Hydrogen target)

Accessing the polarized cross section through SSAs Full HERMES transverse data (02-05 data with $\langle P_T \rangle \approx 73\%$)

The Fourier amplitudes of the yields for opposite transverse target spin states were extracted through a ML fit alternately binned in x, z, and $P_{h\perp}$ but unbinned in ϕ and ϕ_s :

 $PDF(2\langle \sin(\phi \pm \phi_S) \rangle_{UT}, \dots, \phi, \phi_S) = \frac{1}{2} \{1 + P_T(2\langle \sin(\phi \pm \phi_S) \rangle_{UT} \sin(\phi \pm \phi_s) + \dots)\}$

This is equivalent to perform a Fourier decomposition of the cross section asymmetry:

$$\begin{aligned} A_{UT}^{h}(\phi,\phi_{S}) &= \frac{1}{|P_{T}|} \frac{d\sigma^{h}(\phi,\phi_{S}) - d\sigma^{h}(\phi,\phi_{S} + \pi)}{d\sigma^{h}(\phi,\phi_{S}) + d\sigma^{h}(\phi,\phi_{S} + \pi)} \\ &\sim \sin(\phi + \phi_{S}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{k_{T} \hat{P}_{h\perp}}{M_{h}} h_{1}^{q}(x,p_{T}^{2}) H_{1}^{\perp,q}(z,k_{T}^{2}) \right] \\ &+ \sin(\phi - \phi_{S}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{p_{T} \hat{P}_{h\perp}}{M} f_{1T}^{\perp,q}(x,p_{T}^{2}) D_{1}^{q}(z,k_{T}^{2}) \right] + \dots \end{aligned}$$

in the limit of very small ϕ and ϕ_S bins.

 \mathcal{I} [...]: convolution integral over initial (p_T) and final (k_T) quark transverse momenta 14

Collins pions amplitudes

Collins pions amplitudes

Non-zero Collins effect observed

- Both transversity and Collins function sizeable!
- Ø

Ampl. increase with x, i.e. towards the valence region

Isospin symmetry fulfilled

the large negative π^- amplitude suggests disfavored Collins FF with opposite sign:

 $H_{1}^{\perp,\mathrm{unfav}}\left(z\right)\approx-H_{1}^{\perp,\mathrm{fav}}\left(z\right)$

Collins pions amplitudes

Mon-zero Collins effect observed

- Both transversity and Collins function sizeable!
- ☑ / +
 - Ampl. increase with x, i.e. towards the valence region
- V
- Isospin symmetry fulfilled

the large negative π^- amplitude suggests disfavored Collins FF with opposite sign:

 $H_{1}^{\perp,\mathrm{unfav}}\left(z\right)\approx-H_{1}^{\perp,\mathrm{fav}}\left(z\right)$

2-D Collins pions amplitudes

Kinematic dependencies often don't factorize \rightarrow correlations among variables bin in as many independent variables as possibles (multidim. analysis)

X vs. Z

$$\frac{|\mathbf{q}_{u}|^{2}}{|\mathbf{r}_{u}|^{2}} = \frac{|\mathbf{r}_{u}|^{2}}{|\mathbf{r}_{u}|^{2}} = \frac{|\mathbf{r}_{u}|^{2}}{|\mathbf{r}_{u}|$$

Sivers amplitudes

Sivers pions amplitudes

- Slignificantly positive
- clear rise with z
- rise at low $P_{h\perp}$, plateau at high $P_{h\perp}$

Sligthly positive

- Consistent with zero
- Isospin symmetry fulfilled

Sivers pions amplitudes

Confirmed by phenomenological fits (Torino group) and theoretical predictions (Gamberg)! 23

2-D Sivers pions amplitudes

Kinematic dependencies often don't factorize \rightarrow correlations among variables **bin in as many independent variables as possibles (multidim. analysis)**

X vs. Z

X vs. P_h

The pion-difference asymmetry

significantly positive Sivers and Collins amplitudes are obtained

measured amplitudes are not generated by exclusive VM contribution

The pion-difference asymmetry

by decay of Contribution exclusively produced vector mesons is not negligible

a new

Contribution from exclusive ρ^0 largely cancels out

>	$A_{UT}^{\pi^+-\pi^-}$	=	$-\frac{4f_{1T}^{\perp,u_v} - f_{1T}^{\perp,d_v}}{4f_1^{u_v} - f_1^{d_v}}$
---	------------------------	---	--

(cancellation of FFs assuming chargeconjugation and isospin symmetry)

provides access to Sivers u-valence distribution!

Sivers kaons amplitudes

- Slignificantly positive
- clear rise with z
- rise at low $P_{h\perp}$, plateau at high $P_{h\perp}$

sligthly positive

Sivers kaons amplitudes

- Slignificantly positive
- clear rise with z
- $m{r}$ rise at low $P_{h\perp}$, plateau at high $P_{h\perp}$

Sligthly positive

test presence of 1/Q²-suppressed contributions

separate each x-bin in two Q^2 bins

hint of higher-twist contributions to the K⁺ amplitude

The Sivers π^+/K^+ riddle

 π^+/K^+ production dominated by scattering off u-quarks:

$$\propto -\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_W D_1^{u \to \pi^+/K^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+/K^+}(z,k_T^2)}$$

$$\pi^+ \equiv \left| u \overline{d} \right\rangle, K^+ \equiv \left| u \overline{s} \right\rangle \rightarrow \text{ non trivial role of sea quarks}$$

impact of different k_ dependence of FFs in the convolution int. \otimes_W

The Sivers π^+/K^+ riddle

 π^+/K^+ production dominated by scattering off u-quarks:

$$\propto -\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_W D_1^{u \to \pi^+/K^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+/K^+}(z,k_T^2)}$$

?

 $\pi^+ \equiv \left| u \overline{d} \right\rangle, \ K^+ \equiv \left| u \overline{s} \right\rangle \ o \ {
m non trivial role of sea quarks}$

impact of different k_ dependence of FFs in the convolution int. $\otimes_{_W}$

- Difference of $\pi^{\scriptscriptstyle +}$ and $\mathrm{K}^{\scriptscriptstyle +}$ amplitudes
- Separate each x-bin in two Q² bins
- only in low-Q² region significant (90% c.l.) deviation is observed

	Eu		quark	
U.		U	L	Т
n	U	f_1 $ ho$		h_1^\perp () - ()
C	L		g_1 \bigcirc - \bigotimes	h_{1L}^{\perp} · · ·
e	т			$h_1 - \bigcirc \rightarrow \bigcirc \rightarrow$
n n	1	J_{1T}	917 - ••• + •••	h_{1T}^{\perp}

$$\frac{d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{2}\cos\phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q}\sin\phi \, d\sigma_{LU}^{3}}{\text{pretzelosity}}$$

•
$$\propto h_{1T}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$$

+

 correlation between parton transverse momentum and parton transverse polarization in a transversely polarized nucleon

• can be linked to the shape of the nucleon (deviation from a sphere)

- suppressed by two powers of $\mathsf{P}_{\mathsf{h}\bot}$ with respect to Collins and Sivers amplitudes

 $\lambda_{\mathbf{e}} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right]$

$$+\left(\sin(3\phi-\phi_S) d\sigma_{UT}^{10}\right)$$

$$\left| d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_S d\sigma_{UT}^{12} \right|$$

$$\left|\frac{1}{Q}\cos(2\phi - \phi_{S})d\sigma_{LT}^{15}\right|\right\}$$

The $sin(3\phi-\phi_S)$ Fourier component

- Sensitive to pretzelosity
- $\boldsymbol{\cdot}$ suppressed by two powers of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant non-zero signals oberseved

$$\frac{|\mathbf{u} + \mathbf{k}||_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}}|_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}}|_{\mathbf{$$

The $sin(2\phi+\phi_S)$ Fourier component

• arises solely from longitudinal (w.r.t. virtual-photon direction) component of the target spin

- related to $\langle \sin(2\phi) \rangle_{UL}$ Fourier comp
- sensitive to worm-gear h_{1L}^{\perp}
- ${\boldsymbol{\cdot}}$ suppressed by one power of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant non-zero signal observed (except maybe for K+)

$$d\boldsymbol{\sigma} = d\boldsymbol{\sigma}_{UU}^0 + \cos 2\phi \, d\boldsymbol{\sigma}_{UU}^1$$

$$+ \mathbf{S}_{\mathsf{L}} \bigg\{ \sin 2\phi \, d\sigma_{UL}^4 +$$

$$+ \mathbf{S}_{\mathsf{T}} \left\{ \sin(\phi - \phi_{\mathfrak{S}}) \ d\sigma_{UT}^{\mathfrak{s}} + \sin(\phi) \right\}$$

$$+\frac{1}{Q}\sin(2\phi-\phi_{S}) d\sigma_{UT}^{11} + \frac{1}{Q}\sin\phi_{S}d\sigma_{UT}^{12}$$
$$+\lambda_{e}\left[\cos(\phi-\phi_{S}) d\sigma_{LT}^{13} + \frac{1}{Q}\right]$$

$$\mathbf{v} \propto g_{1T}^{\perp}(x, p_T^2) \otimes D_1(z, k_T^2)$$

 correlation between parton transverse momentum and parton longitudinal polarization in a transversely polarized nucleon

• accessible in UT measurements through sub-leading $sin(2\phi-\phi_S)$ Fourier comp.

The subleading-twist $sin(2\phi-\phi_s)$ Fourier component

• sensitive to pretzelosity, wormgear g_{1T}^{\perp} and Sivers function:

$$\begin{split} \propto & \mathcal{W}_1(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left(\mathbf{x} \mathbf{f_T^{\perp} D_1} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{h_{1T}^{\perp}} \frac{\tilde{\mathbf{H}}}{\mathbf{z}} \right) \\ & - \mathcal{W}_2(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left[\left(\mathbf{x} \mathbf{h_T} \mathbf{H_1^{\perp}} + \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{g_{1T}} \frac{\tilde{\mathbf{G}^{\perp}}}{\mathbf{z}} \right) \right. \\ & \left. + \left(\mathbf{x} \mathbf{h_T^{\perp} H_1^{\perp}} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{f_{1T}^{\perp}} \frac{\tilde{\mathbf{D}^{\perp}}}{\mathbf{z}} \right) \right] \end{split}$$

- suppressed by one power of $\mathsf{P}_{h\perp}$ w.r.t. Collins and Sivers amplitudes

no significant non-zero signal observed

The subleading-twist $sin(\phi_s)$ Fourier component

- sensitive to worm-gear g_{1T}^{\perp} , Sivers function, Transversity, etc
- significant non-zero signal observed for π and K⁻ !

The subleading-twist $sin(\phi_S)$ Fourier component

- sensitive to worm-gear g_{1T}^{\perp} , Sivers function, Transversity, etc
- significant non-zero signal observed for π^{-} and K⁻ !

Conclusions

The existence of an intrinsic **quark transverse motion** gives origin to azimuthal asymmetries in the hadron production direction

- Non-zero Boer-Mulders effect observed for identified charged pions
- \rightarrow clear evidence of non-zero Boer-Mulders function and Collins FF
- significant Collins amplitudes observed for charged π -mesons
- \rightarrow enabled first extraction of transversity and Collins FF
- significant Sivers amplitudes observed for π^+ and K⁺
- \rightarrow clear evidence of non-zero Sivers function
- \rightarrow (indirect) evidence for non-zero quark orbital angular momentum
- \rightarrow hint of non-trivial role of sea quarks and of higher-twist contrib. for positive kaons

additional Fourier components recently extracted

- → no evidence of non-zero pretzelosity (though amplitude kinematically suppressed)
- \rightarrow first glimpse on worm-gears h_{1L}^{\perp} and g_{1T}^{\perp} related observables
- \rightarrow significant non-zero $\langle \sin(\phi_s) \rangle_{UT}^h$ amplitudes for negatively charged mesons

Back-up slides

The HERMES experiment at HERA

TRD, Calorimeter, preshower, RICH: lepton-hadron > 98%

hadron separation

The Boer-Mulders effect

analysis based on a multidimensional unfolding of data to correct for acceptance, detector smearing and higher order QED effects

= Kinematic range of integration

	9	00 kine	BIN matica	INING I bins x	: 12 φ _η -k	oins		
Variable			Ε	Bin limits				#
x	0. <mark>023</mark>	0.042	0.078	0.145	0.27	0.6		5
У	0.2	0.3	0.45	0.6	0.7	0.85		5
Z	0.2	0.3	0.4	0.5	0.6	0 <mark>.</mark> 75	1	6
Pt	0.05	0.2	0.35	0.5	0.7	1	1.3	6

= signal not expected and not observed

signal expected and observed

= signal expected but not observed

••

The Boer-Mulders effect for π^+

The Boer-Mulders effect for π^-

Standard cuts				
inclusive DIS	semi-inclusive DIS			
$Q^2 > 1 \mathrm{GeV^2}$	$Q^2 > 1 \mathrm{GeV^2}$			
$W^2 > 4{ m GeV^2}$	$W^2 > 10 \mathrm{GeV^2}$			
0.1 < y < 0.95	<i>y</i> < 0.95			
0.023 < <i>x</i> < 0.4	0.023 < <i>x</i> < 0.4			
	$ heta_{\gamma^*h} > 0.02 \mathrm{rad}$			
	$2 \mathrm{GeV} < P_h < 15 \mathrm{GeV}$			
	0.2 < z < 0.7			

Collins moments: Pion-kaon comparison

- K^+ and π^+ amplitudes consistent (u-quark dominance)
- K^- and π^- amplitudes with opposite sign (but $K^-(\overline{u}s)$ originates from fragmentation of sea quarks)

Siver samplitudes: additional studies

No systematic shifts
 observed between high
 and low Q² amplitudes for
 both π⁺ and K⁺

No indication of important contributions from exclusive VM

2-D moments for π^{\pm} : Z VS. $P_{h\perp}$

Collins

Sivers

An alternative channel to access transversity

Interference FF

(does not depend on quark transv. momentum)

Chiral-odd T- odd

Correlation between transverse spin of the fragmenting quark and the relative orbital angular momentum of the hadron pair.

Describes Spin-orbit correlation in fragmentation

azimuthal asymmetries in the direction of the outgoing hadron pairs.

- Independent way to access transversity
- No complications due to convolution integral \rightarrow interpretation more transparent
- ...but limited statistical power (v.r.t. single-hadron SSAs)
- published on JHEP 06 (2008) 017

The extraction of the Distribution Functions

$$\left\langle \sin(\phi + \phi_{S}) \right\rangle_{UT}^{h} = \frac{\int d\phi_{S} d^{2} \vec{P}_{h\perp} \sin(\phi + \phi_{S}) \ d\sigma_{UT}}{\int d\phi_{S} d^{2} \vec{P}_{h\perp} d\sigma_{UU}} \propto \left[\frac{\vec{k}_{T} \cdot \hat{P}_{h\perp}}{M_{h}} h_{1}(x, p_{T}^{2}) H_{1}^{\perp q}(z, k_{T}^{2}) \right]$$

$$(Convolution integral on transverse momenta \ p_{T} \ and \ k_{T})$$

$$\left\langle \sin(\phi - \phi_{S}) \right\rangle_{UT}^{h} = \frac{\int d\phi_{S} d^{2} \vec{P}_{h\perp} \sin(\phi - \phi_{S}) \ d\sigma_{UT}}{\int d\phi_{S} d^{2} \vec{P}_{h\perp} d\sigma_{UU}} \propto \left[\frac{\vec{p}_{T} \cdot \hat{P}_{h\perp}}{M} \int_{T}^{\perp q}(x, p_{T}^{2}) D_{1}^{q}(z, k_{T}^{2}) \right]$$

Experiment: only partial coverage of the full $P_{h\perp}$ range (acceptance effects) **Theory:** difficult to solve \implies Gaussian ansatz

$$h_1(x, p_T^2) \approx \frac{h_1(x)}{\pi \left\langle p_T^2(x) \right\rangle} e^{-\frac{p_T^2}{\left\langle p_T^2(x) \right\rangle}} \qquad H_1^{\perp q}(z, k_T^2) \approx \frac{H_1^{\perp q}(z)}{\pi \left\langle k_T^2(z) \right\rangle} e^{-\frac{k_T^2}{\left\langle k_T^2(z) \right\rangle}}$$

(extraction assumption-dependent)

Extraction of transversity and Sivers function form global analyses