4th Workshop on Exclusive Reactions at High Momentum Transfer Jefferson Lab, 18-21 May 2010

Quark orbital angular momentum (OAM): can we learn about it from GPDs and TMDs?

Peter Schweitzer

University of Connecticut

based on works with H.Avakian, A.Efremov, O.Teryaev, F.Yuan, P.Zavada

Overview:

- GPDs $\xrightarrow{\text{III}}$ spin structure of nucleon $\xrightarrow{\text{II}}$ OAM!!
- TMDs $\xrightarrow{!}$ transverse parton motion $\xrightarrow{??}$ OAM???
- how? pretzelosity? only in quark models? why possible at all?
- in any case interesting function! can we access it? where?
- conclusions

1. Spin Structure of the nucleon

consider longitudinally polarized nucleon moving very fast in *z*-direction:

very naive picture! sea-quarks, gluons, OAM!?

What we would like to know:

$$\frac{1}{2} = J_z^N$$
$$= S_z^Q + L_z^Q + J_z^{\text{glue}} ?$$

2. GPDs and orbital angular momentum *

* in principle (in practice, see talks by D. Müller, ...)

Exclusive reactions: $H^{a}(x,\xi,t)$, $E^{a}(x,\xi,t)$ \Rightarrow form factors of energy momentum tensor

- $\int dx \ x \left(H^a(x,\xi,t) + E^a(x,\xi,t) \right) = J^a(t)$ ("polynomiality")
- $\lim_{t \to 0} J^a(t) = J^a(0)$ Ji,1997

Deeply inelastic scattering: $g_1^a(x) \Leftrightarrow \text{Exclusive reactions:} \lim_{\xi,t\to 0} \tilde{H}^a(x,\xi,t)$

•
$$\int dx g_1^q(x) \rightarrow S^q$$

Combine:

• $J^q - S^q = L^q$

(issues, decomposition schemes, etc.)

3. OAM, GPDs, and TMDs

- quarks are in transverse plane GPDs $\xrightarrow{III} b \xrightarrow{III} OAM$
- quarks move in transverse plane TMDs $\xrightarrow{111}{\longrightarrow} p_T \xrightarrow{???} OAM$

we expect a connection:

TMDs ↔ OAM

But how?

	p_T	
<i>q</i> -	b	

nucleon moving towards us

4. Pretzelosity

• Definition: (j transverse to +)

$$\frac{1}{2} \operatorname{tr} \left[i \sigma^{+j} \gamma_5 \, \phi(x, \vec{p}_T) \right] = S_T^j \, h_1 + S_L \, \frac{p_T^j}{M_N} \, h_{1L}^\perp + \frac{(p_T^j p_T^k - \frac{1}{2} \, \vec{p}_T^2 \delta^{jk}) S_T^k}{M_N^2} \, h_{1T}^\perp + \frac{\varepsilon^{jk} p_T^k}{M_N} \, h_1^\perp$$

- inequalities $|h_{1T}^{\perp q}(x, p_T)| + |h_1^q(x, p_T)| \le f_1^q(x, p_T)$ (Bacchetta et al. 1999)
- describes non-sphericity of "transverse spin distribution" (G. Miller, Burkhardt)
- requires nucleon wave-function components with $\Delta L = 2$ (M. Burkhardt, 2007)
- some (not all) quark models:

 $h_{1T}^{\perp(1)q}(x,p_T) = g_1^q(x,p_T) - h_1^q(x,p_T)$

(Avakian et al, Bacchetta et al, Efremov et al, Jakob et al, Pasquini et al, She et al) "measure-of-relativity"

notation
$$h_{1T}^{\perp(1)q}(x,p_T) \equiv rac{p_T^2}{2M^2} h_{1T}^{\perp q}(x,p_T)$$
, $h_{1T}^{\perp(1)q}(x) = \int dp_T h_{1T}^{\perp(1)q}(x,p_T)$

relation model-dependent ...

- not valid in quark-target model $h_{1T}^{\perp q} = 0$, $h_1^q g_1^q \neq 0$ (Meissner, Metz, Goeke, 2007)
- not supported in some versions of spectator models (Bacchetta et al 2008)

... but inspiring

• known in light-cone SU(6) quark-diquark model (Ma and Schmidt, 1998)

$$h_1^q(x) - g_1^q(x) = L_z^q(x), \quad \int dx L_z^q(x) = L_z^q$$

direct calculation in light-cone SU(6) quark-diquark model She, Zhu, Ma, 2009

$$h_{1T}^{\perp(1)q}(x,p_T) = g_1^q(x,p_T) - h_1^q(x,p_T)$$
 pretzelosity-relation!

• light-cone SU(6) quark-diquark model She, Zhu, Ma, 2009

 $L_z^q = -\int dx h_{1T}^{\perp(1)q}(x)$ first connection of TMDs and OAM! But model! take different model: you get different result (?) let's see:

• bag model uses SU(6)

 $L_z^q = -\int \mathrm{d}x \, h_{1T}^{\perp(1)q}(x)$ Avakian, Efremov, PS, Yuan, 2010

- covariant parton model no SU(6)-symmetry,
 - $L_z^q = -\int \mathrm{d}x \, h_{1T}^{\perp(1)q}(x)$ Efremov, PS, Teryaev, Zavada, 2010
- non-relativistic limit

$$\lim_{\text{non-rel}} h_{1T}^{\perp q}(x, p_T) = -\frac{N_c^2}{2} P_q \,\delta\!\left(x - \frac{1}{N_c}\right) \,\delta^{(2)}(\vec{p_T})$$

0 = -0 trivial but consistent by product in op. cit.

Questions arise (some answers here, some answers elsewhere)

• How can chiral-even and chiral-odd be related?

$$\psi = \psi_L + \psi_R$$
, $\psi_{L,R} = \frac{1}{2}(1 \pm \gamma_5)\psi$

$$\psi^{\dagger}\Gamma\psi=\psi_{R}^{\dagger}\Gamma\psi_{L}+\psi_{L}^{\dagger}\Gamma\psi_{R}~~{\rm pretzelosity,~chiral~odc}$$

$$\psi^{\dagger}\hat{L}_{z}\psi = \psi_{R}^{\dagger}\hat{L}_{z}\psi_{R} + \psi_{L}^{\dagger}\hat{L}_{z}\psi_{L}$$
 OAM, chiral even

kind of "chiral symmetry breaking" (chirality-flip)?

simple answer in bag model:
$$\psi = \begin{pmatrix} s - wave \\ p - wave \end{pmatrix} \Rightarrow \langle \hat{L}_z \rangle \propto |p - wave|^2$$

pretzelosity $\propto |p\text{-wave}|^2$ (interference of $L_z = \pm 1 \Rightarrow$ needed $\Delta L = 2$, op. cit.)

$$\Rightarrow \qquad \text{chiral-even} = \psi^* \hat{L}_z \psi = \psi^* \begin{pmatrix} * & 0 \\ 0 & 1 \end{pmatrix} \hat{L}_z \psi = -\psi^* \gamma^0 \hat{L}_z \psi$$

= chiral-odd \equiv -pretzelosity

• How can we have relations with S_L and S_T ?

 $OAM = \langle N(S_L) | \dots | N(S_L) \rangle$ pretzelosity = $\langle N(S_T) | \dots | N(S_T) \rangle$

Why not? Simple rotation $|N(S_L)\rangle = U_{90^{\circ}}|N(S_T)\rangle$

But: no operator identity, $\nexists \hat{O}_{OAM} = \hat{O}_{pretzelosity}$ at best: relation at the level of matrix-elements

• Does the result depend on choice of OAM definition? Here (no-gauge-field theory) for L_z^q no ambiguity (Jaffe-Manohar = Ji, M. Burkardt and H. BC, 2009)

- What are model limitations? Valid in models with $L \ge 2$ (*d*-wave, ...)? \rightarrow Cédric Lorcé, Barbara Pasquini, ...
- What happens when we have gluons? No relation! (Meissner, Metz, Goeke, 2007) Jaffe-Manohar vs. Ji matters (Burkardt, BC, 2009)
- What do we know from lattice? Lattice-sign of L_z^q "opposite to all quark-models on the planet" (M. Burkardt, on Monday)
- Not quite true! Chiral quark-soliton model \rightarrow sea-quarks! (Wakamatsu)

resolutions to puzzles (?) Matthias-puzzle: (other) quark models on planet vs. lattice Dieter-puzzle: how can CQSM (model quarks) and lattice (real quarks) agree?

sea-quarks in model, but model reasonable! Based on (relevant!): chiral symmetry breaking from instanton-picture of QCD-vacuum! (Diakonov, Petrov 1984, ...)

OAM and sea quarks?

1. if you find something at large b: likely sea-quark \in "pion-cloud" ("valence-quark" wave-function vanishes exponentially with b)

2.
$$\langle p_T^2 \rangle_{\text{sea}} = \frac{(-1) \langle \psi \psi \rangle M}{2F_{\pi}^2} = (2-3) \langle p_T^2 \rangle_{\text{val}}, \quad \langle p_T^2 \rangle_{\text{val}} \approx 0.2 \text{ GeV}^2, \quad \mu \sim \rho_{\text{av}}^{-1}$$
(Wakamatsu; PS, Strikman, Weiss)

How to see?

- DY with
$$pp$$
 vs. $p\bar{p}$: $\langle q_T^2 \rangle = \begin{cases} \langle p_T^2 \rangle_{\text{val}} + \langle p_T^2 \rangle_{\text{sea}} & \text{in } pp \\ \langle p_T^2 \rangle_{\text{val}} + \langle p_T^2 \rangle_{\text{val}} & \text{in } p\bar{p} \end{cases}$ (\exists some data, GSI and PAX)
- JLab 12, EIC: $\frac{d\sigma(P_{h\perp})}{dP_{h\perp}}$ of $K^+ = u\bar{s}$ vs. $K^- = \bar{u}s$

3. Add 1 + 2! Larger b + larger p_T = more L_z^q ! (intuitive but classic) to be studied in (tractable, effective) quantum field theory (model)! (e.g. chiral quark-soliton model)

Look on pretzelosity: bag model (Avakian, Efremov, PS, Yuan 2009)

Striking: $h_{1T}^{\perp}(x)$ large! But in cross sections $\frac{p_T^i p_T^j}{M^2} h_{1T}^{\perp}(x, p_T)$

 $\frac{\langle p_T^2 \rangle}{M^2} \sim \frac{1}{3}$ at $s = 50 \text{ GeV}^2$ (HERMES) (PS, Teckentrup, Metz 2010) notice $\langle p_T^2 \rangle = \langle p_T^2(s) \rangle$. Important for JLab, HERMES, COMPASS \rightarrow EIC!

Look on pretzelosity: covariant parton (Zavada) model (Efremov, PS, Teryaev, Zavada 2009)

Glimpse (trough Zavada-model-glasses) on $(-1) \times$ OAM ??? Will see ...

Can we access pretzelosity? in semi-inclusive DIS

$$A_{UT}^{\sin(3\phi-\phi_S)} = \frac{h_{1T}^{\perp}H_1^{\perp}}{f_1 D_1} \sim 0 \text{ within error bars preliminary COMPASS (deuteron)}$$
HERMES (proton)

one prediction: light-front constituent model \rightarrow talk by Barbara another prediction Zavada-model: Efremov, PS, Teryaev, Zavada

covariant parton model with rotationally symmetric parton motion $G(Pp/M) = G(p^0)$ in rest frame, Interesting because $h_1^u > g_1^q$

$$ightarrow$$
 sizeable $h_{1T}^{\perp(1)q}(x)$

positivity bound Bacchetta et al, 1999

projections CLAS12 H.Avakian

Will we get a weakly(?) model-dependent glimpse on OAM from pretzelosity!? Why should we believe in quark models? Could be better than we think.

 quark-models have > 30 years of successful phenomenology! Have limitations, have model-accuracy, but we know this (Boffi, Efremov, Pasquini, PS 2009)

Mulders, Tangerman 1995, Kundu, Metz 2001, Goeke, Metz, Pobylitsa, Polyakov 2003

LIRs must hold in all relativistic quark models without gluons \Leftrightarrow Wandzura-Wilczek (type) approximations $\langle \bar{q}gq \rangle \ll \langle \bar{q}q \rangle$ Metz, PS, Teckentrup 2009

classic Wandzura-Wilczek approximation (Wandzura, Wilczek, 1977)

 $g^q_T(x) = \int\limits_x^1 rac{\mathrm{d} y}{y} g^q_1(y) + ilde g^q_T(x)$

 $\tilde{g}_T^q(x) = \langle \bar{q}gq \rangle$ + current quark mass-terms in instanton vacuum suppressed Balla, Polyakov, Weiss 1997 in experiment $\tilde{g}_T^q(x)$ small! SLAC, JLab (review by Accardi et al, 2009) on the lattice also small Göckeler *et al.* 2001

Does not imply that other quark-model relations hold with similar accuracy. Have to be careful and check case by case. But it motivates to have a closer look on such relations in QCD.

In view of the many novel functions: would be welcome to have (approximate) relations among TMDs!

Conclusions

• dual picture of OAM

at least in (naive, happy) quark-model world:

$$\begin{split} L_z^q &= \int \mathrm{d}x \int \mathrm{d}^2 b \left\{ H^q(x,b), \ E^q(x,b), \ \tilde{H}^q(x,b) \right\} \quad \text{(Ji sum rule)} \\ &= -\int \mathrm{d}x \int \mathrm{d}^2 p_T \, h_{1T}^{\perp(1)q}(x,p_T) \qquad \text{("pretzelosity sum rule")} \end{split}$$

- first explicit connection of **OAM and TMDs** in quark models
- quark-model relations **might work** reasonably well (WW, valence-x)
- future data (JLab, EIC) on exclusive + deeply inelastic reactions will decide

Conclusions

• dual picture of OAM

at least in (naive, happy) quark-model world:

$$\begin{split} L_z^q &= \int \mathrm{d}x \int \mathrm{d}^2 b \left\{ H^q(x,b), \ E^q(x,b), \ \tilde{H}^q(x,b) \right\} \quad \text{(Ji sum rule)} \\ &= -\int \mathrm{d}x \int \mathrm{d}^2 p_T \, h_{1T}^{\perp(1)q}(x,p_T) \qquad \text{("pretzelosity sum rule")} \end{split}$$

- first explicit connection of OAM and TMDs in quark models
- quark-model relations **might work** reasonably well (WW, valence-x)
- future data (JLab, EIC) on exclusive + deeply inelastic reactions will decide

Thank you!!