Quark orbital angular momentum (OAM):

can we learn about it from GPDs and TMDs?

Peter Schweitzer

University of Connecticut
based on works with H.Avakian, A.Efremov, O.Teryaev, F.Yuan, P.Zavada

Overview:

- GPDs $\stackrel{!!!}{\longrightarrow}$ spin structure of nucleon $\stackrel{!}{\longrightarrow}$ OAM!!
- TMDs $\xrightarrow{!}$ transverse parton motion $\xrightarrow{? ?}$ OAM???
- how? pretzelosity? only in quark models? why possible at all?
- in any case interesting function! can we access it? where?
- conclusions

1. Spin Structure of the nucleon

consider longitudinally polarized nucleon moving very fast in z-direction:

2. GPDs and orbital angular momentum *

* in principle (in practice, see talks by D. Müller, ...)

Exclusive reactions: $H^{a}(x, \xi, t), E^{a}(x, \xi, t)$
\Rightarrow form factors of energy momentum tensor

- $\int \mathrm{d} x x\left(H^{a}(x, \xi, t)+E^{a}(x, \xi, t)\right)=J^{a}(t) \quad$ ("polynomiality")
- $\lim _{t \rightarrow 0} J^{a}(t)=J^{a}(0) \quad \mathrm{Ji}, 1997$

Deeply inelastic scattering: $g_{1}^{a}(x) \Leftrightarrow$ Exclusive reactions: $\lim _{\xi, t \rightarrow 0} \tilde{H}^{a}(x, \xi, t)$

- $\int \mathrm{d} x g_{1}^{q}(x) \rightarrow S^{q}$

Combine:

- $J^{q}-S^{q}=L^{q}$
(issues, decomposition schemes, etc.)

3. OAM, GPDs, and TMDs

- quarks are in transverse plane

$$
\text { GPDs } \stackrel{!!!}{\rightarrow} b \xrightarrow{!!!} \text { OAM }
$$

- quarks move in transverse plane

TMDs $\stackrel{!!!}{\longrightarrow} p_{T} \xrightarrow{? ? ?}$ OAM
we expect a connection:

TMDs \leftrightarrow OAM

nucleon moving towards us

But how?

4. Pretzelosity

- Definition: (j transverse to +)

$$
\frac{1}{2} \operatorname{tr}\left[i \sigma^{+j} \gamma_{5} \phi\left(x, \vec{p}_{T}\right)\right]=S_{T}^{j} h_{1}+S_{L} \frac{p_{T}^{j}}{M_{N}} h_{1 L}^{\perp}+\frac{\left(p_{T}^{j} p_{T}^{k}-\frac{1}{2} \vec{P}_{T}^{2} \delta^{j k}\right) S_{T}^{k}}{M_{N}^{2}} h_{1 T}^{\perp}+\frac{\varepsilon^{j k} p_{T}^{k}}{M_{N}} h_{1}^{\perp}
$$

- inequalities $\left|h_{1 T}^{\perp q}\left(x, p_{T}\right)\right|+\left|h_{1}^{q}\left(x, p_{T}\right)\right| \leq f_{1}^{q}\left(x, p_{T}\right)$
(Bacchetta et al. 1999)
- describes non-sphericity of "transverse spin distribution" (G. Miller, Burkhardt)
- requires nucleon wave-function components with $\Delta L=2$ (M. Burkhardt, 2007)
- some (not all) quark models:
(Avakian et al, Bacchetta et al,

$$
h_{1 T}^{\perp(1) q}\left(x, p_{T}\right)=g_{1}^{q}\left(x, p_{T}\right)-h_{1}^{q}\left(x, p_{T}\right)
$$ Efremov et al, Jakob et al, Pasquini et al, She et al)

"measure-of-relativity"

$$
\text { notation } h_{1 T}^{\perp(1) q}\left(x, p_{T}\right) \equiv \frac{p_{T}^{2}}{2 M^{2}} h_{1 T}^{\perp q}\left(x, p_{T}\right), h_{1 T}^{\perp(1) q}(x)=\int \mathrm{d} p_{T} h_{1 T}^{\perp(1) q}\left(x, p_{T}\right)
$$

relation model-dependent ...

- not valid in quark-target model $h_{1 T}^{\perp q}=0, h_{1}^{q}-g_{1}^{q} \neq 0$ (Meissner, Metz, Goeke, 2007)
- not supported in some versions of spectator models (Bacchetta et al 2008)
... but inspiring
- known in light-cone SU(6) quark-diquark model (Ma and Schmidt, 1998)

$$
h_{1}^{q}(x)-g_{1}^{q}(x)=L_{z}^{q}(x), \quad \int \mathrm{d} x L_{z}^{q}(x)=L_{z}^{q}
$$

direct calculation in light-cone SU(6) quark-diquark model She, Zhu, Ma, 2009

$$
h_{1 T}^{\perp(1) q}\left(x, p_{T}\right)=g_{1}^{q}\left(x, p_{T}\right)-h_{1}^{q}\left(x, p_{T}\right) \quad \text { pretzelosity-relation! }
$$

- light-cone SU(6) quark-diquark model She, Zhu, Ma, 2009

$$
L_{z}^{q}=-\int \mathrm{d} x h_{1 T}^{\perp(1) q}(x) \quad \begin{array}{ll}
\text { first connection of TMDs and OAM! But model! } \\
& \text { take different model: you get different result (?) let's see: }
\end{array}
$$

- bag model uses SU(6)

$$
L_{z}^{q}=-\int \mathrm{d} x h_{1 T}^{\perp(1) q}(x) \quad \text { Avakian, Efremov, PS, Yuan, } 2010
$$

- covariant parton model no SU(6)-symmetry,

$$
L_{z}^{q}=-\int \mathrm{d} x h_{1 T}^{\perp(1) q}(x) \quad \text { Efremov, PS, Teryaev, Zavada, } 2010
$$

- non-relativistic limit $\lim _{\text {non-rel }} h_{1 T}^{\perp q}\left(x, p_{T}\right)=-\frac{N_{c}^{2}}{2} P_{q} \delta\left(x-\frac{1}{N_{c}}\right) \delta^{(2)}\left(\vec{p}_{T}\right)$

$$
0=-0 \quad \text { trivial but consistent byproduct in op. cit. }
$$

Questions arise (some answers here, some answers elsewhere)

- How can chiral-even and chiral-odd be related?

$$
\begin{aligned}
\psi= & \psi_{L}+\psi_{R}, \quad \psi_{L, R}=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \psi \\
& \psi^{\dagger} \Gamma \psi=\psi_{R}^{\dagger} \Gamma \psi_{L}+\psi_{L}^{\dagger} \Gamma \psi_{R} \quad \text { pretzelosity, chiral odd } \\
& \psi^{\dagger} \widehat{L}_{z} \psi=\psi_{R}^{\dagger} \widehat{L}_{z} \psi_{R}+\psi_{L}^{\dagger} \widehat{L}_{z} \psi_{L} \quad \text { OAM, chiral even }
\end{aligned}
$$

kind of "chiral symmetry breaking" (chirality-flip)?
simple answer in bag model: $\left.\psi=\binom{s$-wave }{p-wave }$\Rightarrow\left\langle\hat{L}_{z}\right\rangle \propto \right\rvert\, p$-wave $\left.\right|^{2}$
pretzelosity $\propto \mid p$-wave $\left.\right|^{2} \quad$ (interference of $L_{z}= \pm 1 \Rightarrow$ needed $\Delta L=2$, op. cit.)

$$
\begin{aligned}
\Rightarrow \quad \text { chiral-even } & =\psi^{*} \widehat{L}_{z} \psi=\psi^{*}\left(\begin{array}{cc}
* & 0 \\
0 & 1
\end{array}\right) \widehat{L}_{z} \psi=-\psi^{*} \gamma^{0} \widehat{L}_{z} \psi \\
& =\text { chiral-odd } \equiv-\text { pretzelosity }
\end{aligned}
$$

- How can we have relations with S_{L} and S_{T} ?

$$
\begin{aligned}
\mathrm{OAM} & =\left\langle N\left(S_{L}\right)\right| \ldots\left|N\left(S_{L}\right)\right\rangle \\
\text { pretzelosity } & =\left\langle N\left(S_{T}\right)\right| \ldots\left|N\left(S_{T}\right)\right\rangle
\end{aligned}
$$

Why not? \quad Simple rotation $\left|N\left(S_{L}\right)\right\rangle=U_{90 \circ}\left|N\left(S_{T}\right)\right\rangle$
But: no operator identity, $\nexists \widehat{O}_{\mathrm{OAM}}=\hat{O}_{\text {pretzelosity }}$ at best: relation at the level of matrix-elements

- Does the result depend on choice of OAM definition? Here (no-gauge-field theory) for L_{z}^{q} no ambiguity (Jaffe-Manohar $=$ Ji, M. Burkardt and H. BC, 2009)
- What are model limitations? Valid in models with $L \geq 2$ (d-wave, ...)?
\rightarrow Cédric Lorcé, Barbara Pasquini,...
- What happens when we have gluons?

No relation! (Meissner, Metz, Goeke, 2007)
Jaffe-Manohar vs. Ji matters (Burkardt, BC, 2009)

- What do we know from lattice? Lattice-sign of L_{z}^{q} "opposite to all quark-models on the planet" (M. Burkardt, on Monday)
- Not quite true! Chiral quark-soliton model \rightarrow sea-quarks! (Wakamatsu)
resolutions to puzzles (?)
Matthias-puzzle: (other) quark models on planet vs. lattice
Dieter-puzzle: how can CQSM (model quarks) and lattice (real quarks) agree?
sea-quarks in model, but model reasonable! Based on (relevant!): chiral symmetry breaking from instanton-picture of QCD-vacuum!
(Diakonov, Petrov 1984, ...)

OAM and sea quarks?

1. if you find something at large b : likely sea-quark \in "pion-cloud" ("valence-quark" wave-function vanishes exponentially with b)
2. $\left\langle p_{T}^{2}\right\rangle_{\text {sea }}=\frac{(-1)\langle\bar{\psi} \psi\rangle M}{2 F_{\pi}^{2}}=(2-3)\left\langle p_{T}^{2}\right\rangle_{\mathrm{val}}, \quad\left\langle p_{T}^{2}\right\rangle_{\mathrm{val}} \approx 0.2 \mathrm{GeV}^{2}, \quad \mu \sim \rho_{\mathrm{av}}^{-1}$ (Wakamatsu; PS, Strikman, Weiss)

How to see?

- DY with $p p$ vs. $p \bar{p}: \quad\left\langle q_{T}^{2}\right\rangle=\left\{\begin{array}{lll}\left\langle p_{T}^{2}\right\rangle_{\text {val }}+\left\langle p_{T_{2}^{2}}^{2}\right\rangle_{\text {sea }} & \text { in } p p & \text { (} \exists \text { some data, } \\ \left\langle p_{T}^{2}\right\rangle_{\text {val }}+\left\langle p_{T}^{2}\right\rangle_{\text {val }} & \text { in } p \bar{p} & \text { GSI and PAX) }\end{array}\right.$
- JLab 12, EIC: $\frac{\mathrm{d} \sigma\left(P_{h \perp}\right)}{\mathrm{d} P_{h \perp}}$ of $K^{+}=u \bar{s}$ vs. $K^{-}=\bar{u} s$

3. Add $1+2$! Larger $b+\operatorname{larger} p_{T}=$ more $L_{z}^{\bar{q}}$! (intuitive but classic) to be studied in (tractable, effective) quantum field theory (model)!
(e.g. chiral quark-soliton model)

Look on pretzelosity: bag model (Avakian, Efremov, PS, Yuan 2009)

Striking: $h_{1 T}^{\perp}(x)$ large! But in cross sections $\frac{p_{T}^{i} p_{T}^{j}}{M^{2}} h_{1 T}^{\perp}\left(x, p_{T}\right)$
$\frac{\left\langle p_{T}^{2}\right\rangle}{M^{2}} \sim \frac{1}{3}$ at $s=50 \mathrm{GeV}^{2} \quad$ (HERMES) (PS, Teckentrup, Metz 2010)
notice $\left\langle p_{T}^{2}\right\rangle=\left\langle p_{T}^{2}(s)\right\rangle$. Important for JLab, HERMES, COMPASS \rightarrow EIC!

Look on pretzelosity: covariant parton (Zavada) model

(Efremov, PS, Teryaev, Zavada 2009)

Glimpse (trough Zavada-model-glasses) on (-1) \times OAM ??? Will see ...

Can we access pretzelosity? in semi-inclusive DIS

$$
A_{U T}^{\sin \left(3 \phi-\phi_{S}\right)}=\frac{h_{1 T}^{\perp} H_{1}^{\perp}}{f_{1} D_{1}} \sim 0 \text { within error bars }
$$

one prediction: light-front constituent model \rightarrow talk by Barbara another prediction Zavada-model: Efremov, PS, Teryaev, Zavada

covariant parton model with rotationally symmetric parton motion $G(P p / M)=G\left(p^{0}\right)$ in rest frame, Interesting because $h_{1}^{u}>g_{1}^{q}$
\rightarrow sizeable $h_{1 T}^{\perp(1) q}(x)$
positivity bound Bacchetta et al, 1999
projections CLAS12 H.Avakian

Will we get a weakly(?) model-dependent glimpse on OAM from pretzelosity!? Why should we believe in quark models? Could be better than we think.

- quark-models have >30 years of successful phenomenology! Have limitations, have model-accuracy, but we know this (Boffi, Efremov, Pasquini, PS 2009)
- LIRs

$$
g_{T}(x) \stackrel{\mathrm{LIR}}{=} g_{1}(x)+\frac{\mathrm{d}}{\mathrm{~d} x} g_{1 T}^{(1)}(x)
$$

$$
\begin{aligned}
& h_{L}(x) \stackrel{\text { LIR }}{=} h_{1}(x)-\frac{\mathrm{d}}{\mathrm{~d} x} h_{1 L}^{\perp(1)}(x), \\
& h_{T}(x) \stackrel{\text { LIR }}{=} \\
&-\frac{\mathrm{d}}{\mathrm{~d} x} h_{1 T}^{\perp(1)}(x) \\
& g_{L}^{\perp}(x)+\frac{\mathrm{d}}{\mathrm{~d} x} g_{T}^{\perp(1)}(x) \stackrel{\text { LIR }}{=} 0 \\
& h_{T}\left(x, p_{T}^{2}\right)-h_{T}^{\perp}\left(x, p_{T}^{2}\right) \stackrel{\text { LIR }}{=} \underbrace{h_{1 L}^{\perp}\left(x, p_{T}^{2}\right)}_{\text {twist-2 }}
\end{aligned}
$$

LIRs must hold in all relativistic quark models without gluons \Leftrightarrow Wandzura-Wilczek (type) approximations $\langle\bar{q} g q\rangle \ll\langle\bar{q} q\rangle$

```
Metz, PS, Teckentrup 2009
```

classic Wandzura-Wilczek approximation (Wandzura, Wilczek, 1977)

$$
g_{T}^{q}(x)=\int_{x}^{1} \frac{\mathrm{~d} y}{y} g_{1}^{q}(y)+\tilde{g}_{T}^{q}(x)
$$

$$
\tilde{g}_{T}^{q}(x)=\langle\bar{q} g q\rangle+\text { current quark mass-terms }
$$

$$
\text { in instanton vacuum suppressed Balla, Polyakov, Weiss } 1997
$$

$$
\text { in experiment } \tilde{g}_{T}^{q}(x) \text { small! SLAC, JLab (review by Accardi et al, 2009) }
$$

$$
\text { on the lattice also small Göckeler et al. } 2001
$$

Does not imply that other quark-model relations hold with similar accuracy. Have to be careful and check case by case. But it motivates to have a closer look on such relations in QCD.

In view of the many novel functions: would be welcome to have (approximate) relations among TMDs!

Conclusions

- dual picture of OAM
at least in (naive, happy) quark-model world:

$$
\begin{aligned}
L_{z}^{q} & =\int \mathrm{d} x \int \mathrm{~d}^{2} b\left\{\boldsymbol{H}^{q}(x, b), \boldsymbol{E}^{q}(x, b), \tilde{H}^{q}(x, b)\right\} \quad \text { (Ji sum rule) } \\
& =-\int \mathrm{d} x \int \mathrm{~d}^{2} p_{T} h_{1 T}^{\perp(1) q}\left(x, p_{T}\right) \quad \text { ("pretzelosity sum rule") }
\end{aligned}
$$

- first explicit connection of OAM and TMDs in quark models
- quark-model relations might work reasonably well (WW, valence- x)
- future data (JLab, EIC) on exclusive + deeply inelastic reactions will decide

Conclusions

- dual picture of OAM
at least in (naive, happy) quark-model world:

$$
\begin{aligned}
L_{z}^{q} & =\int \mathrm{d} x \int \mathrm{~d}^{2} b\left\{\boldsymbol{H}^{q}(x, b), \boldsymbol{E}^{q}(x, b), \tilde{H}^{q}(x, b)\right\} \quad \text { (Ji sum rule) } \\
& =-\int \mathrm{d} x \int \mathrm{~d}^{2} p_{T} h_{1 T}^{\perp(1) q}\left(x, p_{T}\right) \quad \text { ("pretzelosity sum rule") }
\end{aligned}
$$

- first explicit connection of OAM and TMDs in quark models
- quark-model relations might work reasonably well (WW, valence- x)
- future data (JLab, EIC) on exclusive + deeply inelastic reactions will decide

