Photoproduction of a $\pi \rho_T$ pair with a large invariant mass and Transversity Generalized Parton Distribution

Lech Szymanowski

Soltan Institute for Nuclear Studies
Warsaw, Poland

Workshop on Exclusive Reactions at High Momentum Transfer,
JLab, May 18-21, 2010

in collaboration with
M. E. Beiyad (CPhT, Palaiseau and LPT, Orsay), B. Pire (CPhT, Palaiseau),
M. Segond (Leipzig) and S. Wallon (LPT, Orsay)
Transversity of the nucleon using hard processes

What is transversity?

Transverse spin content of the proton:

$| \uparrow \rangle (x) \sim | \rightarrow \rangle + | \leftarrow \rangle$

$| \downarrow \rangle (x) \sim | \rightarrow \rangle - | \leftarrow \rangle$

spin along x helicity states

Observable sensible to helicity flip thus give access to transversity $\Delta T q(x)$. Very poorly known

Transversity GPDs are completely unknown

For massless (anti)particles, chirality = (-)helicity

Transversity is thus a chiral-odd quantity

Since QCD and QED are chiral even, the chiral odd quantities which one want to measure should appear in pairs
Transversity of the nucleon using hard processes: using a two body final state process?

How to get access to transversity?

- the dominant DA of ρ_T is of twist 2 and chiral odd ($[\gamma^\mu, \gamma^\nu]$ coupling)
- unfortunately $\gamma^* N^\uparrow \rightarrow \rho_T N' = 0$
 - this is true at any order, because this would require a transfer of helicity of 2 from photon: impossible!

lowest order diagrammatic argument:

$$\gamma^\alpha [\gamma^\mu, \gamma^\nu] \gamma_\alpha = 0$$
Transversity of the nucleon using hard processes: using a two body final state process?

Can one circumvent this vanishing?

- this vanishing is true only a twist 2
- at twist 3 this process does not vanish
- however processes involving twist 3 DAs may face problems with factorization (end-point singularities)
- the problem of classification of twist 3 chiral-odd GPDs is still open

Our process: $\gamma N \rightarrow \pi^+ \rho_T^0 N'$

$\gamma N \rightarrow \pi^+ \rho_T^0 N'$ gives access to transversity

- Factorization à la Brodsky Lepage of $\gamma + \pi \rightarrow \pi + \rho$ at large s and fixed angle (i.e. fixed ratio t'/s, u'/s)
 \implies factorization of the amplitude for $\gamma + N \rightarrow \pi + \rho + N'$ at large $M_{\pi\rho}^2$

- a typical non-vanishing diagram:

- these processes with 3 body final state can give access to all GPDs. $M_{\pi\rho}^2$ plays the role of γ^* in usual DVCS, and can be scanned.
Master formula based on leading twist 2 factorization

\[\mathcal{A} = \frac{1}{\sqrt{2}} \int_{-1}^{1} dx \int_{0}^{1} dv \int_{0}^{1} dz \left(T_u^u(x, v, z) - T_d^d(x, v, z) \right) \Phi_{\pi^+}(z) \Phi_{\rho^0}(v) + \cdots \]
Non-perturbative matrix elements

One needs to encode the matrix elements of two kinds of chiral-odd operator:

- **transversity GPDs** (twist-2 level):

\[
\int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle p_2, \lambda_2 | \bar{\psi}_q \left(-\frac{1}{2} z^- \right) i\sigma^{+i} \psi \left(\frac{1}{2} z^- \right) | p_1, \lambda_1 \rangle \\
= \frac{1}{2P^+} \tilde{u}(p_2, \lambda_2) \left[H_T^q(x, \xi, t) i\sigma^{+i} + \tilde{H}_T^q(x, \xi, t) \frac{P^+ \Delta^i - \Delta^+ P^i}{M_N^2} \right] \gamma^+ \frac{\Delta^i - \Delta^+}{2M_N} u(p_1, \lambda_1) + \tilde{E}_T^q(x, \xi, t) \frac{\gamma^+ P^i - P^+ \gamma^i}{M_N} \gamma^+ \frac{\Delta^i - \Delta^+}{2M_N} u(p_1, \lambda_1)
\]

for \(\Delta_\perp = 0 \) each above factors vanishes except for \(H_T^q \) which thus dominates in the small \(t \) domain

- **transversity DAs** (twist-2 level):

\[
\langle 0 | \bar{u}(0) \sigma^{\mu\nu} u(x) | \rho^0(p, s) \rangle = \frac{i}{\sqrt{2}} (\sigma_\rho^{\mu} p^\nu - \sigma_\rho^\nu p^\mu) f_{\rho} \int_0^1 du \ e^{-iu p \cdot x} \phi_\perp(u)
\]
Kinematics

- use a Sudakov basis: light-cone vectors p, n with $2p \cdot n = s$
- assume the following kinematics:
 - Δ_\perp^μ small
 - $M^2, m^2, m^2_\rho \ll M^2_{\pi\rho}$
- initial state particle momenta:
 $$q^\mu = n^\mu, \quad p^\mu_1 = (1 + \xi)p^\mu + \frac{M^2}{s(1+\xi)} n^\mu$$
- final state particle momenta:
 $$p^\mu_2 = (1 - \xi)p^\mu + \frac{M^2 + \vec{\Delta}_t^2}{s(1 - \xi)} n^\mu + \Delta_\perp^\mu$$
 $$p^\mu_\pi = \alpha n^\mu + \frac{(\vec{p}_t - \vec{\Delta}_t/2)^2 + m^2_\pi}{\alpha s} p^\mu + p^\mu_\perp - \frac{\Delta_\perp^\mu}{2}$$
 $$p^\mu_\rho = \alpha_\rho n^\mu + \frac{(\vec{p}_t + \vec{\Delta}_t/2)^2 + m^2_\rho}{\alpha_\rho s} p^\mu - p^\mu_\perp - \frac{\Delta_\perp^\mu}{2}$$
Total center-of-mass energy squared of the γ-N system

$$S_{\gamma N} = (q + p_1)^2$$

Hard scale: invariant squared mass of the (π^+, ρ^0) system

$$M_{\pi\rho}^2 = (p_\pi + p_\rho)^2 \simeq -u' = -(p_\rho - q)^2 \simeq -p_{\perp}^2$$

Transferred squared momentum:

$$t = (p_2 - p_1)^2 \quad \text{small} \quad t$$

Skewedness:

$$\xi = \frac{\tau}{2-\tau}$$

with $\tau = \frac{M_{\pi\rho}^2}{S_{\gamma N} - M_{\pi\rho}^2}$ (generalized Bjorken variable for Drell Yan)
Computation of the hard part

Typical Feynman diagrams (62 in total)

Diagram with photon u-quark coupling

Diagram with photon d-quark coupling
Access to GPD through a 3 body final state

Transversity GPD and Double Distribution

Unpolarized Cross Section

Conclusion

representative diagram with a 3 gluon vertex
Tensorial structure of the amplitude

\[A_{H_{T}}^{q} = (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot \epsilon_{\rho} \pm) (p_{\perp} \cdot \epsilon_{\gamma}) A + (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot \epsilon_{\gamma} \perp) (p_{\perp} \cdot \epsilon_{\rho} \pm) B \]

\[+ \ (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot p_{\perp}) (\epsilon_{\gamma} \perp \cdot \epsilon_{\rho} \pm) C \]

\[- \ (N_{\lambda_{1}\lambda_{2}}^{\perp} \cdot p_{\perp}) (p_{\perp} \cdot \epsilon_{\gamma} \perp) (p_{\perp} \cdot \epsilon_{\rho} \pm) D \]

with

- A, B, C, D scalar functions of $S_{\gamma N}$, $-u'$ and $M_{\pi \rho}^{2}$
- $\epsilon_{\gamma} \perp$ the transverse polarization of the on-shell photon
- $N_{\lambda_{1}\lambda_{2}}^{\perp} \mu = \frac{2i}{p \cdot n} g_{\mu \nu}^{\perp} \bar{u}(p_{2}, \lambda_{2}) \gamma_{\nu} \gamma_{5} u(p_{1}, \lambda_{1})$

Rich spin structure of $A_{H_{T}}^{q}$: access to the spin density matrix of ρ_{T}^{0}, polarization asymmetries, ...
A model based on Double Distribution

Realistic Parametrization of H_T^q

- GPDs can be represented in terms of **Double Distribution** (Radyushkin)
 based on **Schwinger** representation of a toy model for GPDs which has the structure of a triangle diagram in scalar ϕ^3 theory

\[H_T^q(x, \xi, t = 0) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(\beta + \xi\alpha - x) \, f_T^q(\beta, \alpha) \]

- ansatz for these Double Distribution (Radyushkin):
 \[f_T^q(\beta, \alpha) = \Pi(\beta, \alpha) \, \Delta_T q(\beta) \]
 \[\Delta_T q(x) : \text{chiral-odd PDF (Anselmino et al.)} \]
 \[\Pi(\beta, \alpha) = \frac{3}{4} \frac{(1-\beta)^2-\alpha^2}{(1-\beta)^3} : \text{profile function (} f_T^q(\beta, 0) = \Delta_T q(\beta) \text{)} \]

- ansatz for the t-dependence:

\[H_T^q(x, \xi, t) = H_T^q(x, \xi, t = 0) \times F_H(t) \]

with \[F_H(t) = \frac{C^2}{(t-C)^2} \text{ a standard dipole form factor (} C = .71 \text{ GeV)} \]
Plots of our model for transversity GPD

x and ξ-dependence of $H_T^q(x, \xi, t = 0)$
Plots of our model for transversity GPD

x-dependence of $H_T^q(x, \xi, t = 0)$ for fixed values of ξ

Same order of magnitude but significant differences with other parametrizations (Pincetti et al.) and lattice calculations (Göckeler et al.)

$$A_{T10}^u(t \sim 0) \approx 0.4(0.9)$$

$$A_{T10}^d(t \sim 0) \approx -0.1(-0.2)$$
Unpolarized differential cross section

\[\frac{d\sigma}{dt \, du' \, dM_{\pi\rho}^2} \bigg|_{t=t_{min}} = \frac{|M|^2}{32 S_{\gamma N}^2 M_{\pi\rho}^2 (2\pi)^3} \]

- **Validity of the factorization of the partonic amplitude:**
 \(-t', -u' > \Lambda^2 \Rightarrow \Lambda_{QCD}^2 \) with \(\Lambda \sim 1 \text{ GeV} \)

- **Suppress final states interactions (to justify factorization):**
 \(M_{\pi N'}^2, M_{\rho N'}^2 > M_R^2 \) with \(M_R^2 = 2 \text{ GeV}^2 \)

 \[-u'_{min}(res.) (t, S_{\gamma N}, M_{\pi\rho}^2) \]

- **Cuts over \(-t'\) and \(M_{\rho N'}^2\):**
 \(-u'_{max} (t, S_{\gamma N}, M_{\pi\rho}^2) \)

\[
\begin{align*}
S_{\gamma N} &= 20 \text{ GeV}^2, M_{\pi\rho}^2 = 3 \text{ GeV}^2 \\
M_{\pi N'}^2 &= 3 \text{ GeV}^2, M_{\rho N'}^2 > M_R^2
\end{align*}
\]
Differential cross section for $M_{\pi\rho}^2 = 6 \text{ GeV}^2$

- $S_{\gamma N} = 20 \text{ GeV}^2$
 \[
 \frac{d\sigma}{dt\,du'\,dM_{\pi\rho}^2} \bigg|_{t=t_{\text{min}}} \propto 10 \text{ nb. GeV}^{-6}
 \]

- $S_{\gamma N} = 200 \text{ GeV}^2$
 \[
 \frac{d\sigma}{dt\,du'\,dM_{\pi\rho}^2} \bigg|_{t=t_{\text{min}}} \propto 0.01 \text{ nb. GeV}^{-6}
 \]
Predictions

$M_{\pi\rho}^2$-dependence of the differential cross section $\frac{d\sigma}{dM_{\pi\rho}^2}$

\[
\frac{d\sigma}{dM_{\pi\rho}^2} = \int_{-0.5}^{t_{\text{min}}} dt \int_{-u'_{\text{max}}}^{-u'_{\text{min}}} d(-u') \frac{d\sigma}{dt\,du'dM_{\pi\rho}^2} \bigg|_{t=t_{\text{min}}}
\]

\[
\frac{d\sigma}{dM_{\pi\rho}^2} \quad \text{(nb.GeV}^{-2})
\]

Total cross sections for photoproduction:

$\sigma(S_{\gamma N} = 20 \text{ GeV}^2) \simeq 33 \text{ nb}$ $\sigma(S_{\gamma N} = 200 \text{ GeV}^2) \simeq 0.1 \text{ nb}$
Predictions

$S_{\gamma N}$-dependence of the differential cross section σ

With our cuts

- $-t',-u' > 1 \text{ GeV}^2$
- $M_{\pi N'}^2, M_{\rho N'}^2 > 2 \text{ GeV}^2$
Muoproduction at Compass (CERN)

Very sizable rates

- denote $\Gamma_T^{\mu}(Q^2, \nu)$ the quasi real (transverse) photon flux ($E_\mu = 160$ GeV).

- Total cross section for the muoproduction $\mu N \rightarrow \mu\pi^+ \rho_{T}^0 N'$

$$\sigma_\mu = \int_{0.02}^{1} dQ^2 \int_{16}^{144} d\nu \ \Gamma_T^{\mu}(Q^2, \nu) \ \sigma_{\gamma^* N \rightarrow \pi^+ \rho_{T}^0 N'}(Q^2, \nu) \approx 0.25 \text{ pb}$$

- Experimental rate: For a muon beam luminosity of $2.5 \times 10^{32} \text{ cm}^{-2}\text{.s}^{-1}$, $R \approx 6 \times 10^{-2} \text{ Hz}$

Very sizable
Rate estimates at JLab

Very high rates

- **CLAS12 Hall B:**

 with a photon (7 - 10.5 GeV) flux $N_\gamma \sim 5 \times 10^7$ photons/s

 Experimental rate: $R \sim \mathbf{0.1 \ Hz}$

- **Hall D (12 GeV)**

 - photon (8 - 9 GeV) flux $N_\gamma \sim 10^8$ photons/s
 - number of protons per surface unit $N_p \sim 1.27 \ \text{b}^{-1}$ (target: liquid hydrogen (30 cm))

 Experimental rate: $R = \sigma \times N_\gamma \times N_p \sim \mathbf{5 \ Hz}$
Photoproduction of a $\pi \rho_T^0$ pair with a large hard scale $M_{\pi\rho}^2$ sensitive to the transversity GPDs even for unpolarized target and at twist-2 level

Parametrization of the dominant chiral-odd GPD H_T^q based on double distribution

Promising way to get informations on the generalized chiral-odd quark content of the nucleon:

- large enough rates to extract transversity GPDs, at COMPASS and JLab@12 GeV
- Possibility to access to:
 - spin density matrix of ρ_T^0
 - spin asymmetries
 - chiral-even GPDs H and \tilde{H} with ρ_L^0

M. El Beiyad, B. Pire, L.S., S. Wallon in preparation

Such processes with 3 body final state are also promising for non transversity GPD measurement, on top of the now standard DVCS based studies
Introduction Access to GPD through a 3 body final state Transversity GPD and Double Distribution Unpolarized Cross Section
Transverse polarization of ρ_T^0

$$
\epsilon^\mu_\pm(p_\rho) = \left(\frac{\vec{p}_\rho \cdot \vec{\epsilon}_\pm}{m_\rho}, \, \vec{\epsilon}_\pm + \frac{\vec{p}_\rho \cdot \vec{\epsilon}_\pm}{m_\rho(E_\rho + m_\rho)} \vec{p}_\rho \right)
$$

$$
\Rightarrow \quad 2\bar{\alpha} \frac{\hat{p}_t \cdot \vec{\epsilon}_\pm}{\bar{\alpha}^2 s + \vec{p}_t^2} (p^\mu + n^\mu) + (0, \vec{\epsilon}_\pm)
$$

$$
\Rightarrow \quad 2\bar{\alpha} \frac{\hat{p}_t \cdot \vec{\epsilon}_\pm}{\bar{\alpha}^2 s + \vec{p}_t^2} \left[1 - \frac{\vec{p}_t^2}{\bar{\alpha}^2 s} \right] p^\mu + 2\frac{\hat{p}_t \cdot \vec{\epsilon}_\pm}{\bar{\alpha}^2 s + \vec{p}_t^2} p^\mu_T + (0, \vec{\epsilon}_\pm)
$$
Transversity PDFs

\[\Delta_T u(x) = 7.5 \times 0.5 \times (1 - x)^5 (x \times u(x) + x \times \Delta u(x)) \]
\[\Delta_T \bar{u}(x) = 7.5 \times 0.5 \times (1 - x)^5 (x \times \bar{u}(x) + x \times \Delta \bar{u}(x)) \]
\[\Delta_T d(x) = 7.5 \times (-0.6) \times (1 - x)^5 (x \times d(x) + x \times \Delta d(x)) \]
\[\Delta_T \bar{d}(x) = 7.5 \times (-0.6) \times (1 - x)^5 (x \times \bar{d}(x) + x \times \Delta \bar{d}(x)) \]

Polarized PDFs

\[\Delta u(x) = \sqrt{x} u(x) \]
\[\Delta \bar{u}(x) = -0.3 \times x^{0.4} \bar{u}(x) \]
\[\Delta d(x) = -0.7 \sqrt{x} d(x) \]
\[\Delta \bar{d}(x) = -0.3 \times x^{0.4} \bar{d}(x) \]