Photoproduction of a $\pi \rho_T$ pair with a large invariant mass and Transversity Generalized Parton Distribution

Lech Szymanowski

Soltan Institute for Nuclear Studies Warsaw, Poland

Workshop on Exclusive Reactions at High Momentum Transfer, JLab, May, 18-21, 2010

Phys. Lett. B 688 (2010) 154 [arXiv:1001.4491]

in collaboration with

M. E. Beiyad (CPhT, Palaiseau and LPT, Orsay), B. Pire (CPhT, Palaiseau),

M. Segond (Leipzig) and S. Wallon (LPT, Orsay)

Transversity of the nucleon using hard processes

What is transversity?

• Transverse spin content of the proton:

• Observable sensible to helicity flip thus give access to transversity $\Delta_T q(x)$. Very poorly known

- For massless (anti)particles, chirality = (-)helicity
- Transversity is thus a chiral-odd quantity
- Since QCD and QED are chiral even, the chiral odd quantities which one want to measure should appear in pairs

Jac.

Transversity of the nucleon using hard processes: using a two body final state process?

How to get access to transversity?

- the dominant DA of ρ_T is of twist 2 and chiral odd ($[\gamma^{\mu}, \gamma^{\nu}]$ coupling)
- unfortunately $\gamma^* N^{\uparrow} \rightarrow \rho_T N' = 0$
 - this is true at any order, because this would require a transfer of helicity of 2 from photon: impossible!

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Iowest order diagrammatic argument:

Transversity of the nucleon using hard processes: using a two body final state process?

Can one circumvent this vanishing?

- this vanishing is true only a twist 2
- at twist 3 this process does not vanish
- however processes involving twist 3 DAs may face problems with factorization (end-point singularities)
- the problem of classification of twist 3 chiral-odd GPDs is still open (B. Pire, L. S., S. Wallon, in preparation, in the spirit of our Light-Cone Collinear Factorization framework: Anikin, Ivanov, Pire, L. S, S. Wallon

JOG CP

Master formula based on leading twist 2 factorization

$$\mathcal{A} = \frac{1}{\sqrt{2}} \int_{-1}^{1} dx \int_{0}^{1} dv \int_{0}^{1} dz \; (T^{u}(x, v, z) - T^{d}(x, v, z)) \\ \times \quad (H^{u}_{T}(x, \xi, t) - H^{d}_{T}(x, \xi, t)) \Phi_{\pi}(z) \Phi_{\rho}(v) + \cdots$$

・ロト ・ 日 ・ ミー ・ ヨー ・ シュマ

Non pertubative matrix elements

One needs to encode the matrix elements of two kinds of chiral-odd operator:

• transversity GPDs (twist-2 level):

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \langle p_{2}, \lambda_{2} | \bar{\psi}_{q} \left(-\frac{1}{2}z^{-} \right) i\sigma^{+i}\psi \left(\frac{1}{2}z^{-} \right) | p_{1}, \lambda_{1} \rangle$$

$$= \frac{1}{2P^{+}} \bar{u}(p_{2}, \lambda_{2}) \left[H_{T}^{q}(x,\xi,t)i\sigma^{+i} + \tilde{H}_{T}^{q}(x,\xi,t) \frac{P^{+}\Delta^{i} - \Delta^{+}P^{i}}{M_{N}^{2}} + E_{T}^{q}(x,\xi,t) \frac{\gamma^{+}\Delta^{i} - \Delta^{+}\gamma^{i}}{M_{N}} + \tilde{E}_{T}^{q}(x,\xi,t) \frac{\gamma^{+}P^{i} - P^{+}\gamma^{i}}{M_{N}} \right] u(p_{1},\lambda_{1})$$

- for $\Delta_{\perp} = 0$ each above factors vanishes except for H_T^q which thus dominates in the small t domain
- in the forward limit it is the only transversity GPD which survives: $H_T^q(x, 0, 0) = \Delta_T q(x)$ (quark transversity distribution)
- transversity DAs (twist-2 level):

$$\langle 0|\bar{u}(0)\sigma^{\mu\nu}u(x)|\rho^{0}(p,s)\rangle = \frac{i}{\sqrt{2}}(\sigma^{\mu}_{\rho}p^{\nu} - \sigma^{\nu}_{\rho}p^{\mu})f^{\perp}_{\rho}\int_{0}^{1}du \ e^{-iup\cdot x} \ \phi_{\perp}(u)$$

$$p_{\pi}^{\mu} = \alpha n^{\mu} + \frac{(\vec{p}_{t} - \vec{\Delta}_{t}/2)^{2} + m_{\pi}^{2}}{\alpha s} p^{\mu} + p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2}$$
$$p_{\rho}^{\mu} = \alpha_{\rho} n^{\mu} + \frac{(\vec{p}_{t} + \vec{\Delta}_{t}/2)^{2} + m_{\rho}^{2}}{\alpha_{\rho} s} p^{\mu} - p_{\perp}^{\mu} - \frac{\Delta_{\perp}^{\mu}}{2}$$

< ロ > < 母 > < 三 > < 三 > 、 三 ・ の < ()

Computation of the hard part

・ロ > ・ 一日 > ・ 三 > ・ 三 > ・ 今 へ ()・

Tensorial structure of the amplitude

$$\begin{aligned} \mathcal{A}_{H_T^q} &= (N_{\lambda_1\lambda_2}^{\perp} \cdot \epsilon_{\rho\pm})(p_{\perp} \cdot \epsilon_{\gamma\perp})A + (N_{\lambda_1\lambda_2}^{\perp} \cdot \epsilon_{\gamma\perp})(p_{\perp} \cdot \epsilon_{\rho\pm})B \\ &+ (N_{\lambda_1\lambda_2}^{\perp} \cdot p_{\perp})(\epsilon_{\gamma\perp} \cdot \epsilon_{\rho\pm})C \\ &- (N_{\lambda_1\lambda_2}^{\perp} \cdot p_{\perp})(p_{\perp} \cdot \epsilon_{\gamma\perp})(p_{\perp} \cdot \epsilon_{\rho\pm})D \end{aligned}$$

Jac.

with

- A, B, C, D scalar functions of $S_{\gamma N}$, -u' and $M^2_{\pi \rho}$
- $\epsilon^{\mu}_{\gamma\perp}$ the transverse polarization of the on-shell photon • $N^{\perp\mu}_{\lambda_1\lambda_2} = \frac{2i}{n\cdot n} g^{\mu\nu}_{\perp} \bar{u}(p_2,\lambda_2) \# \gamma_{\nu} \gamma^5 u(p_1,\lambda_1)$

Rich spin structure of $\mathcal{A}_{H^q_T}$: access to the spin density matrix of $\rho^0_T,$ polarization asymmetries, ...

A model based on Double Distribution

Realistic Parametrization of H_T^q

• GPDs can be represented in terms of Double Distribution (Radyushkin) based on Schwinger representation of a toy model for GPDs which has the structure of a triangle diagram in scalar ϕ^3 theory

$$H_T^q(x,\xi,t=0) = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \ \delta(\beta+\xi\alpha-x) \ f_T^q(\beta,\alpha)$$

- ansatz for these Double Distribution (Radyushkin):
 - $f_T^q(\beta, \alpha) = \Pi(\beta, \alpha) \Delta_T q(\beta)$
 - $\Delta_T q(x)$: chiral-odd PDF (Anselmino *et al.*)

•
$$\Pi(\beta, \alpha) = \frac{3}{4} \frac{(1-\beta)^2 - \alpha^2}{(1-\beta)^3}$$
 : profile function $(f_T^q(\beta, 0) = \Delta_T q(\beta))$

• ansatz for the *t*-dependence:

$$H^q_T(x,\xi,t) = H^q_T(x,\xi,t=0) \times F_H(t)$$

with $F_H(t) = \frac{C^2}{(t-C)^2}$ a standard dipole form factor ($C = .71 \text{ GeV}$)

Plots of our model for transversity GPD

x and ξ -dependence of $H_T^q(x,\xi,t=0)$

0.0

x

-0.5

0.5

Plots of our model for transversity GPD

Same order of magnitude but significant differences with other parametrizations (Pincetti *et al.*) and lattice calculations (Göckeler *et al.*)

Unpolarized differential cross section

Differential Cross Section and Physical Cuts

Predictions

Predictions

Total cross sections for photoproduction:

$$\sigma(S_{\gamma N} = 20 \text{ GeV}^2) \simeq 33 \text{ nb} \quad \sigma(S_{\gamma N} = 200 \text{ GeV}^2) \simeq 0.1 \text{ nb}$$

Predictions

Muoproduction at Compass (CERN)

Very sizable rates

- denote $\Gamma^{\mu}_{T}(Q^{2}, \nu)$ the quasi real (transverse) photon flux ($E_{\mu} = 160$ GeV).
- \bullet Total cross section for the muoproduction $\mu N \to \mu \pi^+ \rho_T^0 N'$

$$\sigma_{\mu} = \int_{0.02}^{1} dQ^2 \int_{16}^{144} d\nu \ \Gamma_T^{\mu}(Q^2,\nu) \ \sigma_{\gamma^*N \to \pi^+ \rho_T^0 N'}(Q^2,\nu) \simeq 0.25 \text{ pb}$$

• Experimental rate: For a muon beam luminosity of 2.5 10^{32} cm⁻².s⁻¹,

$$\mathbf{R}\simeq 6~10^{-2}~\text{Hz}$$

Sac

Very sizable

Rate estimates at JLab

Very high rates

• CLAS12 Hall B:

with a photon (7 - 10.5 GeV) flux $N_{\gamma} \sim 5 \ 10^7$ photons/s

Experimental rate: $R \sim 0.1 \text{ Hz}$

• Hall D (12 GeV)

- photon (8 9 GeV) flux $N_\gamma \sim 10^8$ photons/s
- number of protons per surface unit $N_p \sim 1.27 \ {
 m b}^{-1}$ (target : liquid hydrogen (30 cm))

Sac

Experimental rate: $R = \sigma \times N_{\gamma} \times N_p \sim 5 \text{ Hz}$

Conclusion

- Photoproduction of a $\pi \rho_T^0$ pair with a large hard scale $M_{\pi\rho}^2$ sensitive to the transversity GPDs even for unpolarized target and at twist-2 level
- \bullet Parametrization of the dominant chiral-odd GPD H^q_T based on double distribution
- Promising way to get informations on the generalized chiral-odd quark content of the nucleon: large enough rates to extract transversity GPDs, at COMPASS and JLab@12 GeV
- Possibility to access to :
 - spin density matrix of ho_T^0
 - spin asymmetries
 - chiral-even GPDs H and \tilde{H} with ρ_L^0

M. El Beiyad, B. Pire, L.S., S. Wallon in preparation

 Such processes with 3 body final state are also promising for non transversity GPD measurement, on top of the now standard DVCS based studies

3

Jac.

BACKUP

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 > < 三 > へ 0 へ 0

Transverse polarization of ρ_T^0

$$\begin{aligned} \epsilon^{\mu}_{\pm}(p_{\rho}) &= \left(\frac{\vec{p}_{\rho} \cdot \vec{\epsilon}_{\pm}}{m_{\rho}}, \ \vec{\epsilon}_{\pm} + \frac{\vec{p}_{\rho} \cdot \vec{\epsilon}_{\pm}}{m_{\rho}(E_{\rho} + m_{\rho})} \vec{p}_{\rho}\right) \\ \Rightarrow & 2\bar{\alpha} \frac{\vec{p}_{t} \cdot \vec{\epsilon}_{\pm}}{\bar{\alpha}^{2}s + \vec{p}_{t}^{2}} \left(p^{\mu} + n^{\mu}\right) + (0, \vec{\epsilon}_{\pm}) \\ \Rightarrow & 2\bar{\alpha} \frac{\vec{p}_{t} \cdot \vec{\epsilon}_{\pm}}{\bar{\alpha}^{2}s + \vec{p}_{t}^{2}} \left[1 - \frac{\vec{p}_{t}^{2}}{\bar{\alpha}^{2}s}\right] p^{\mu} + 2\frac{\vec{p}_{t} \cdot \vec{\epsilon}_{\pm}}{\bar{\alpha}^{2}s + \vec{p}_{t}^{2}} p_{T}^{\mu} + (0, \vec{\epsilon}_{\pm}) \end{aligned}$$

・ロト ・ 御 ト ・ ヨト ・ ヨト

 $\mathfrak{I}_{\mathcal{A}}$

₹

Transversity PDFs

$$\begin{aligned} \Delta_T u(x) &= 7.5 * 0.5 * (1-x)^5 (x * u(x) + x * \Delta u(x)) \\ \Delta_T \bar{u}(x) &= 7.5 * 0.5 * (1-x)^5 (x * \bar{u}(x) + x * \Delta \bar{u}(x)) \\ \Delta_T d(x) &= 7.5 * (-0.6) * (1-x)^5 (x * d(x) + x * \Delta d(x)) \\ \Delta_T \bar{d}(x) &= 7.5 * (-0.6) * (1-x)^5 (x * \bar{d}(x) + x * \Delta \bar{d}(x)) \end{aligned}$$

Polarized PDFs

シック 三 《言》《言》《曰》 《曰》