

Hard photodisintegration of He³

Carlos Granados

Florida International University

JLab Workshop on Exclusive Reactions at High Momentum Transfer

Newport News, VA May 20, 2010

伺 と く ヨ と く ヨ と

• HRM of Deuteron Breakup

2 HRM of ³He

- Scattering Amplitude
- op and pn breakup
- Spectator Momentum Distributions
- Polarization Transfer

Outline Introduction HRM of ³ He Summary

HRM of Deuteron Breakup

Hard photodisintegration of a nucleon pair

$\gamma + NN \rightarrow N + N$

- High energy photon absorbed by a NN system generating two nucleons at large transverse momentum.
- $s_{\gamma NN} \approx 4m_N^2 + 4E_{\gamma}m_N$, compare to $s_{NN} = 2m_N^2 + 2E \cdot m_N$ from $N + N \longrightarrow N + N$ processes.
- Moderate beam energies access hard kinematic regime, QCD degrees of freedom become evident.
- Potentially probes NN interaction.
- Studies can be extended to other baryonic

channels,e.g., $\gamma + NN \longrightarrow \Delta + \Delta$

Hard rescattering model, HRM

- L. Frankfurt et al., Phys. Rev. Lett. 84, 3045 (2000)
 - Through the HRM $d(\gamma, p)n$ amplitude results in a convolution of a hard process amplitude and a nuclear wave function, $\langle \lambda_{1f}, \lambda_{2f} | A | \lambda_{\gamma}, \lambda_{d} \rangle = -\frac{i[\lambda_{\gamma}]eQ_{f}\sqrt{2}(2\pi)^{3}}{\sqrt{25}k_{NN}} \times$

 $\sum_{\lambda_{2i}} \int \langle \lambda_{2f}; \lambda_{1f} \mid T_{NN}^{QIM}(s_{NN}, t_N) \mid \lambda_{\gamma}; \lambda_{2i} \rangle \Psi_{d,NR}^{\lambda_d \lambda_{\gamma}; \lambda_{2i}}(\vec{p}_1, \vec{p}_2) m_N \frac{d^2 p_\perp}{(2\pi)^2},$

• A parameter free cross section calculable through the input of experimental data,

$$\frac{\mathrm{d}\sigma^{\gamma\mathrm{d}\to\mathrm{pn}}}{\mathrm{dt}}(s,\theta_{c.m.}) = \frac{8\alpha}{9}\pi^4 \frac{1}{s'}C(\frac{\tilde{t}}{s})$$
$$\times \frac{\mathrm{d}\sigma^{\mathrm{pn}\to\mathrm{pn}}}{\mathrm{dt}}(s,\theta_{c.m.}^{\mathsf{N}}) \times \left|\int \Psi_d^{NR}(p_z=0,p_t)\sqrt{m_n}\frac{\mathrm{d}^2p_t}{(2\pi)^2}\right|^2$$

• Angular distributions in pn elastic scattering data should be reflected by $\gamma + d \longrightarrow p + n$ data.

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Introduction HRM of ³ He Summary

HRM of Deuteron Breakup

Energy Distribution

$\gamma + d \rightarrow p + n$

 $\frac{\gamma}{s}$

I. Pomerantz et al. [JLab Hall A Collaboration], Phys. Lett. B 684, 106 (2010)

$$(m{d},m{p})m{n}\simm{s}^{-11}$$
 for $E_{\gamma}>2GeV$, $>10{f GeV}^2$

 $p + n \rightarrow p + n$

<ロト <部 > < 注 > < 注 >

Outline Introduction HRM of ³ He Summary

HRM of Deuteron Breakup

Angular Distributions

$\gamma + d \rightarrow p + n$

Carlos Granados

Outline	
Introduction	
HRM of ³ He	
Summary	

$^{3}He(\gamma NN)N_{s}$

S. J. Brodsky, et al., Phys. Lett. B578 (2004) 69.

Reinforcing understanding of $\gamma(d, p)n$

- Different predictions from QCD models fitted to d(γ, p)n.
- Access to proton-proton breakup channel.
- Introduce spectator momentum distributions.

Outline	Scattering Amplitude
Introduction	
HRM of ³ He	
Summary	

HRM of ³He

S. J. Brodsky, et al., Phys. Lett. B578 (2004) 69.

- NN system with relative momentum $p_{\perp} << m_N$
- Low momentum *p_s* spectator nucleon *N_s*.
- $N = q_v + res$.
- The photon is absorbed by a valence quark of a nucleon from the NN system.
- γ triggers hard scattering off 2nd
 valence quark.
- Two nucleons emerging at large transverse momentum.

Outline	Scattering Amplitude
Introduction	
HRM of ³ He	
Summarv	

Scattering Amplitude

$$\begin{split} &\langle \lambda_{f1}, \lambda_{f2}, \lambda_{s} \mid A \mid \lambda_{\gamma}, \lambda_{A} \rangle = \\ &(\mathbf{N1}) : \int \frac{-i\Gamma_{N1f} i p_{1f} - k_{1} + m_{q}}{(p_{1f} - k_{1})^{2} - m_{q}^{2} + i\epsilon} iS(k_{1}) \cdots [-igT_{c}^{F}\gamma_{\mu}] \cdots \\ &\frac{ip_{1i} - k_{1}}{(p_{1i} - k_{1})^{2} - m^{2} + i\epsilon} \frac{iS(k_{1}) \cdots [-igT_{c}^{F}\gamma_{\mu}] \cdots \\ &(\gamma_{q}) : \frac{ip_{1i} - k_{1} + q - m_{q}}{(p_{1i} - k_{1} + q)^{2} - m_{q}^{2} + i\epsilon} [-iQ_{i}e\epsilon^{\perp}\gamma^{\perp}] \\ &(\mathbf{N2}) : \int \frac{-i\Gamma_{N2f} i p_{2f} - k_{2}}{(p_{2f} - k_{2})^{2} - m_{q}^{2} + i\epsilon} iS(k_{2}) \cdots [-igT_{c}^{F}\gamma_{\nu}] \\ &\frac{ip_{2i} - k_{2}}{(p_{2i} - k_{2})^{2} - m^{2} + \epsilon} \frac{d^{4}k_{2}}{(2\pi)^{4}} \\ &(^{3}\text{He}) : \int \frac{-i\Gamma_{3}\text{He} \cdot \bar{u}_{\lambda_{s}}(p_{s})ip_{NN} - p_{2i} + m_{N}]}{(p_{NN} - p_{2i})^{2} - m_{N}^{2} + i\epsilon} \frac{ip_{2i} - m_{N}^{2} + i\epsilon}{(2\pi)^{4}} \\ &(g) : \frac{id^{\mu_{1}\nu}\delta_{ab}}{((p_{2i} - k_{2}) - (p_{1i} - k_{1}) - (q - l)]^{2} + i\epsilon}, \end{split}$$

≣⇒

(1)

Outline Scattering Amplitude Introduction pp and pn breakup HRM of ³ He Spectator Momentum Dist Summary Polarization Transfer

Define line cone momentum fractions: $\alpha = \frac{p_{2i}^+}{p_{NN}^+}$, $\mathbf{x}^{(')} = \frac{\mathbf{k}_N^+}{p_{Ni(f)}^+}$

and nuclear and nucleonic wave functions. After performing loop integrations and using,

$$p'+m\approx\sum_{s}u_{s}(p)\bar{u}_{s}(p),$$

for internal lines off mass-shell, the invariant amplitude is reduced

$$\begin{split} \langle \lambda_{1f}, \lambda_{2f}, \lambda_{s} \mid A \mid \lambda_{\gamma}, \lambda_{A} \rangle &= \sum_{(\eta's), (\lambda'_{f}s), (\zeta)} \int \left\{ \frac{\psi_{N}^{\dagger \lambda_{2f}, \eta_{2f}}(p_{2f}, x'_{2}, k_{2\perp})}{1 - x'_{2}} \bar{u}_{\eta_{2f}}(p_{2f} - k_{2})[-igT_{c}^{F}\gamma^{\nu}] \\ u_{\zeta}(p_{1i} - k_{1} + q) \frac{\bar{u}_{\zeta}(p_{1i} - k_{1} + q)[-iQ_{i}e\epsilon_{\perp}^{\lambda\gamma}\gamma^{\perp}]u_{\eta_{1i}}(p_{1i} - k_{1})}{(1 - x_{1})s'(\alpha - (\alpha_{c} + i\epsilon))} \frac{\psi_{N}^{\lambda_{1i}, \eta_{1i}}(p_{1i}, x_{1}, k_{1\perp})}{(1 - x_{1})} \right\}_{1} \times \\ \left\{ \frac{\psi_{N}^{\dagger \lambda_{1f}, \eta_{1f}}(p_{1f}, x'_{1}, k_{1\perp})}{1 - x'_{1}} \bar{u}_{\eta_{1f}}(p_{1f} - k_{1})[-igT_{c}^{F}\gamma^{\mu}]u_{\eta_{2i}}(p_{2i} - k_{2})} \frac{\psi_{N}^{\lambda_{2i}, \eta_{2i}}(p_{2i}, x_{2}, k_{2\perp})}{(1 - x_{2})} \right\}_{2} \times \\ G^{\mu,\nu}(r) \frac{dx_{1}}{x_{1}} \frac{d^{2}k_{1\perp}}{2(2\pi)^{3}} \frac{dx_{2}}{x_{2}} \frac{d^{2}k_{2\perp}}{2(2\pi)^{3}} \frac{\Psi_{N}^{\lambda,\lambda_{1i},\lambda_{2i},\lambda_{s}}(\alpha, p_{\perp}, p_{s})}{(1 - \alpha)} \frac{d\alpha}{\alpha} \frac{d^{2}p_{\perp}}{2(2\pi)^{3}} - (p_{1f} \longleftrightarrow p_{2f}), \end{split}$$

Carlos Granados Hard photodisintegration of He

Outline	Scattering Amplitude
Introduction	
HRM of ³ He	
Summary	

struck quark factor

$$\frac{\bar{u}_{\zeta}(p_{1i}-k_{1}+q)[-iQ_{i}e\epsilon_{\perp}^{\lambda\gamma}\gamma^{\perp}]u_{\eta_{1i}}(p_{1i}-k_{1})}{(1-x_{1})s'(\alpha-(\alpha_{c}+i\epsilon))}\approx i\pi\delta(\alpha-\alpha_{c})Q_{i}e\lambda_{\gamma}\sqrt{\frac{2(1-(1-x_{1})(1-\alpha))}{s'(1-x_{1})}}\delta_{\zeta\lambda\gamma}\delta_{\eta_{1i}\lambda\gamma}$$
$$\approx x_{1}\rightarrow 0 \qquad i\pi\delta(\alpha-\alpha_{c})Q_{i}e\lambda_{\gamma}\sqrt{\frac{2\alpha}{s'}}\delta_{\zeta\lambda\gamma}\delta_{\eta_{1i}\lambda\gamma}$$

where,

$$\alpha_{c} = 1 + \frac{1}{s'_{NN}} \begin{bmatrix} \tilde{m}_{N}^{2} - \frac{m_{s}^{2}(1-x_{1}) + m_{q}^{2}x_{1} + (k_{1} - x_{1}p_{1})_{\perp}^{2}}{x_{1}(1-x_{1})} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{9} - \frac{200}{180} \\ 180 \\ 140 \\ 1$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

э

Outline	Scattering Amplitude
Introduction	
HRM of ³ He	
Summarv	

$$\begin{split} &\langle \lambda_{1f}, \lambda_{2f} \lambda_{s} \mid A_{i} \mid \lambda_{\gamma}, \lambda_{A} \rangle = i[\lambda_{\gamma}] e \sum_{\substack{(\eta_{1f}, \eta_{2f}), (\eta_{2i}), \lambda_{1i}, \lambda_{2i}} \int \frac{Q_{i}}{\sqrt{2s'}} \\ & \left[\left\{ \frac{\psi_{N}^{\dagger \lambda_{2f}, \eta_{2f}}}{1 - x'_{2}} \bar{u}_{\eta_{2f}} [-igT_{c}^{F} \gamma^{\nu}] u_{\eta_{1i}} \frac{\psi_{N}^{\lambda_{1i}, \eta_{1i}}}{(1 - x_{1})} \right\} \times \\ & \left\{ \frac{\psi_{N}^{\dagger \lambda_{1f}, \eta_{1f}}}{1 - x'_{1}} \bar{u}_{\eta_{1f}} [-igT_{c}^{F} \gamma^{\mu}] u_{\eta_{2i}} \frac{\psi_{N}^{\lambda_{2i}, \eta_{2i}}}{(1 - x_{2})} \right\} \\ & G^{\mu, \nu} \frac{dx_{1}}{x_{1}} \frac{d^{2}k_{1\perp}}{2(2\pi)^{3}} \frac{dx_{2}}{x_{2}} \frac{d^{2}k_{2\perp}}{2(2\pi)^{3}} \right] \psi_{3He}^{\lambda_{A}, \lambda_{1i}, \lambda_{2i}} (\alpha = \frac{1}{2}, p_{2\perp}) \frac{d^{2}p_{2\perp}}{(2\pi)^{2}}. \end{split}$$

los Granados Hard photodisintegration of He³

Outline	Scattering Amplitude
Introduction	
HRM of ³ He	
Summary	

Accounting for all possible quark interchange diagrams we obtain,

$$\begin{split} \langle \lambda_{1f}, \lambda_{2f}, \lambda_{s} \mid M \mid \lambda_{\gamma}, \lambda_{A} \rangle &= \frac{i[\lambda_{\gamma}]e\sqrt{2}(2\pi)^{3}}{\sqrt{2S_{NN}^{\prime}}} \times \\ \begin{cases} Q_{F}^{N_{1}} \sum_{\lambda_{2i}} \int \langle \lambda_{2f}; \lambda_{1f} \mid T_{NN}^{QIM}(s_{NN}, t_{N}) \mid \lambda_{\gamma}; \lambda_{2i} \rangle \Psi_{3He,NR}^{\lambda_{A}}(\vec{p}_{1}, \lambda_{\gamma}; \vec{p}_{2}, \lambda_{2i}; \vec{p}_{s}, \lambda_{s}) m_{N} \frac{d^{2}p_{\perp}}{(2\pi)^{2}} + \\ Q_{F}^{N_{2}} \sum_{\lambda_{1i}} \int \langle \lambda_{2f}; \lambda_{1f} \mid T_{NN}^{QIM}(s_{NN}, t_{N}) \mid \lambda_{1i}; \lambda_{\lambda} \rangle \Psi_{3He,NR}^{\lambda_{A}}(\vec{p}_{1}, \lambda_{1i}; \vec{p}_{2}, \lambda_{\gamma}; \vec{p}_{s}, \lambda_{s}) m_{N} \frac{d^{2}p_{\perp}}{(2\pi)^{2}} \end{cases} \end{cases}$$

$$(3)$$

where charge factors Q_F are introduced such that,

$$\sum_{i \in N} Q_i^N \langle a'b' | T_{NN,i}^{QIM} | ab \rangle = Q_F^N \cdot \langle a'b' | T_{NN}^{QIM} | ab \rangle$$

∃ >

For the quark interchange NN amplitudes we choose NN helicity amplitudes labeled as follows:

$$< +, + |T_{NN}^{QIM}| +, + > = \phi_{1}$$

$$< +, + |T_{NN}^{QIM}| +, - > = \phi_{5}$$

$$< +, + |T_{NN}^{QIM}| -, - > = \phi_{2}$$

$$< +, - |T_{NN}^{QIM}| +, - > = \phi_{3}$$

$$< + - |T_{NN}^{QIM}| -, + > = -\phi_{4}.$$

$$(4)$$

All other helicity combinations can be related to the above amplitudes through the parity and time-reversal symmetry. The cross section of a NN scattering is defined as

$$\frac{d\sigma^{NN\to NN}}{dt} = \frac{1}{16\pi} \frac{1}{s(s-4m_N^2)} \frac{1}{2} (|\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2).$$

Then for NN breakup in ${}^{3}He$, using the antisymmetry of the ${}^{3}He$ ground state wave function we have,

$$\begin{aligned} \langle +, +, \lambda_{s} \mid A \mid +, \lambda_{A} \rangle &= B \int \left[Q_{F} \phi_{5} \Psi_{3He}^{\lambda_{A}}(+, -, \lambda_{s}) + Q_{F} \phi_{1} \Psi_{3He}^{\lambda_{A}}(+, +, \lambda_{s}) \right] m_{N} \frac{d^{2} p_{\perp}}{(2\pi)^{2}} \\ \langle +, -, \lambda_{s} \mid A \mid +, \lambda_{A} \rangle &= B \int \left[(Q_{F}^{N_{1}} \phi_{3} + Q_{F}^{N_{2}} \phi_{4}) \Psi_{3He}^{\lambda_{A}}(+, -, \lambda_{s}) - Q_{F} \phi_{5} \Psi_{3He}^{\lambda_{A}}(+, +, \lambda_{s}) \right] \\ &\times m_{N} \frac{d^{2} p_{\perp}}{(2\pi)^{2}} \\ \langle -, +, \lambda_{s} \mid A \mid +, \lambda_{A} \rangle &= B \int \left[-(Q_{F}^{N_{1}} \phi_{4} + Q_{F}^{N_{2}} \phi_{3}) \Psi_{3He}^{\lambda_{A}}(+, -, \lambda_{s}) + Q_{F} \phi_{5} \Psi_{3He}^{\lambda_{A}}(+, +, \lambda_{s}) \right] \\ &\times m_{N} \frac{d^{2} p_{\perp}}{(2\pi)^{2}} \\ \langle -, -, \lambda_{s} \mid A \mid +, \lambda_{A} \rangle &= B \int \left[Q_{F} \phi_{5} \Psi_{3He}^{\lambda_{A}}(+, -, \lambda_{s}) + Q_{F} \phi_{2} \Psi_{3He}^{\lambda_{A}}(+, +, \lambda_{s}) \right] m_{N} \frac{d^{2} p_{\perp}}{(2\pi)^{2}} \end{aligned}$$

where $B = \frac{ie\sqrt{2}(2\pi)^3}{\sqrt{2s'_{NN}}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then for the averaged squared amplitude one obtains,

$$\begin{split} \left|\bar{\mathcal{M}}\right|^{2} = & \frac{e^{2}2(2\pi)^{6}}{2s_{NN}^{\prime}}\frac{1}{2}\left\{2Q_{F}^{2}|\phi_{5}|^{2}S_{0} + Q_{F}^{2}(|\phi_{1}|^{2} + |\phi_{2}|^{2})S_{12} + \left[(Q_{F}^{N_{1}}\phi_{3} + Q_{F}^{N_{2}}\phi_{4})^{2} + (Q_{F}^{N_{1}}\phi_{4} + Q_{F}^{N_{2}}\phi_{3})^{2}\right]S_{34}\right\} \end{split}$$

$$(6)$$

where $Q_F = Q_F^{N_1} + Q_F^{N_2}$ and S_{12} , S_{34} , and S_0 are partially integrated nuclear spectral functions:

$$S_{12}(t_1, t_2, \alpha, \vec{p}_s) = N_{NN} \sum_{\lambda_1 = \lambda_2 = -\frac{1}{2}}^{\frac{1}{2}} \sum_{\lambda_3 = -\frac{1}{2}}^{\frac{1}{2}} \left| \int \Psi_{3\text{He,NR}}^{\frac{1}{2}}(\vec{p}_1, \lambda_1, t_1; \vec{p}_2, \lambda_2, t_2; \vec{p}_s, \lambda_3) m_N \frac{d^2 p_{\perp}}{(2\pi)^2} \right|^2, \quad (7)$$

$$S_{34}(t_1, t_2, \alpha, \vec{p}_s) = N_{NN} \sum_{\lambda_1 = -\lambda_2 = -\frac{1}{2}}^{\frac{1}{2}} \sum_{\lambda_3 = -\frac{1}{2}}^{\frac{1}{2}} \left| \int \Psi_{3}^{\frac{1}{2}} \text{He}_{NR}(\vec{p}_1, \lambda_1, t_1; \vec{p}_2, \lambda_2, t_2; \vec{p}_s, \lambda_3) m_N \frac{d^2 p_{\perp}}{(2\pi)^2} \right|^2$$
(8)

and

 $S_0 = S_{12} + S_{34}.$

(9)

Assuming the massless approximation for the interchanging quarks, their corresponding helicities are conserved during the hard subprocess, leading to the vanishing of NN amplitudes that don't conserve helicity, i.e.,

$$\begin{array}{rcl} \phi_2 & = & 0 \\ \phi_5 & = & 0 \end{array}$$

then for NN scattering,

$$\frac{d\sigma^{NN\to NN}}{dt} = \frac{1}{16\pi} \frac{1}{s(s-4m_N^2)} \frac{1}{2} (|\phi_1|^2 + |\phi_3|^2 + |\phi_4|^2), \tag{10}$$

while for NN breakup

$$\begin{split} \left|\bar{\mathcal{M}}\right|^{2} = & \frac{e^{2}2(2\pi)^{6}}{2s_{NN}^{\prime}}\frac{1}{2}\left\{Q_{F}^{2}(|\phi_{1}|^{2})S_{12}+\right.\\ & \left[\left(Q_{F}^{N_{1}}\phi_{3}+Q_{F}^{N_{2}}\phi_{4}\right)^{2}+\left(Q_{F}^{N_{1}}\phi_{4}+Q_{F}^{N_{2}}\phi_{3}\right)^{2}\right]S_{34}\right\} (11) \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Introduction	Scattering Amplitude pp and pn breakup
HRM of ³ He	Spectator Momentum Distributions
Summary	

Hard pn Breakup

- For large angle pn scattering $\phi_{\rm 3}\approx\phi_{\rm 4},$
- while for pn breakup $Q_F^{pn} = \frac{1}{3}$,

• and for ³*He* ground state $S_{12}^{pn} \approx S_{34}^{pn} \approx \frac{S_0^{pn}}{2}$, yielding,

$$|\bar{M}|^{2} = \frac{(eQ_{F,pn})^{2}(2\pi)^{6}}{s_{NN}^{\prime}} 16\pi s_{NN}(s_{NN} - 4m_{N}^{2}) \frac{d\sigma^{pn \to pn}(s_{NN}, t_{N})}{dt_{N}} \frac{S_{0}^{pn}}{2},$$
(12)

and for the differential cross section,

$$\frac{d\sigma^{\gamma^{3}He \to (pn)p}}{dt\frac{d^{3}p_{s}}{E_{s}}} = \alpha Q_{F,pn}^{2} 16\pi^{4} \frac{S_{0}^{pn}(\alpha = \frac{1}{2}, \vec{p}_{s})}{2} \frac{s_{NN}(s_{NN} - 4m^{2})}{(s_{NN} - p_{NN}^{2})_{NN}^{2}(s - M_{3}^{2}_{He})} \frac{d\sigma^{pn \to pn}(s_{NN}, t_{N})}{dt_{N}},$$

コマン きょう きょう

Outline	
Introduction	pp and pn breakup
HRM of ³ He	
Summary	

Hard pp Breakup

- For pp scattering, $\phi_4 \sim -\phi_3$ for large $\theta_{c.m.}$
- From exclusion principle and *S* state dominance of the nuclear wave function, $S_{12}^{pp} << S_{34}^{pp}$,
- with $Q_F^{pp} = \frac{5}{3}$,

for pp breakup,

$$\left|\bar{\mathcal{M}}\right|^{2} = \frac{\left(e^{2}2(2\pi)^{6}}{2s'_{NN}}\frac{1}{2}\left\{2Q_{F}^{PP}(|\phi_{3}|-|\phi_{4}|)^{2}S_{34}\right\}.$$
 (14)

Then, for the corresponding differential cross section,

$$\frac{d\sigma^{\gamma^{3}He\rightarrow(pp)n}}{dt\frac{d^{3}p_{s}}{E_{s}}} = \alpha Q_{F,pp}^{2} 16\pi^{4} S_{34}^{pp} (\alpha = \frac{1}{2}, \vec{p}_{s}) \frac{2\beta^{2}}{1+2C^{2}} \frac{s_{NN}(s_{NN}-4m_{N}^{2})}{(s_{NN}-p_{NN}^{2})^{2}(s-M_{3}^{2}He)} \times \frac{d\sigma^{pp\rightarrow pp}(s_{NN}, t_{N})}{dt},$$
(15)

where,

$$C^2 = \frac{\phi_3^2}{\phi_1^2} \approx \frac{\phi_4^2}{\phi_1^2}$$

and,

$$\beta = \frac{|\phi_3| - |\phi_4|}{|\phi_1|},$$

(16)

イロト イポト イヨト イヨト

3

Outline	
Introducțion	pp and pn breakup
HRM of ³ He	Spectator Momentum Distributions
Summary	

M. M. Sargsian and C. Granados, Phys. Rev. C 80,

014612 (2009)

Figure: Energy dependence of s^{11} weighted differential cross sections at 90° c.m. angle scattering in " γ -*NN*" system. In these calculations one integrated over the spectator nucleon momenta in the range of 0-100 MeV/c.

∃ →

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\begin{split} \frac{d\sigma^{\gamma^{3}He\rightarrow(pn)p}}{dt\frac{d^{3}p_{s}}{E_{s}}} &= \alpha Q_{F,pn}^{2} 16\pi^{4} \frac{S_{0}^{pn}(\alpha = \frac{1}{2}, \vec{p}_{s})}{2} \\ \frac{s_{NN}(s_{NN} - 4m^{2})}{(s_{NN} - p_{NN}^{2})_{NN}^{2}(s - M_{3}^{2}_{He})} \frac{d\sigma^{pn\rightarrow pn}(s_{NN}, t_{N})}{dt_{N}}, \end{split}$$

$$\begin{split} \frac{d\sigma^{\gamma^{3}He \to (pp)n}}{dt\frac{d^{3}p_{s}}{E_{s}}} &= \alpha Q_{F,pp}^{2} 16\pi^{4} S_{34}^{pp} (\alpha = \frac{1}{2}, \vec{p}_{s}) \frac{2\beta^{2}}{1+2C^{2}} \\ &\frac{s_{NN}(s_{NN} - 4m_{N}^{2})}{(s_{NN} - p_{NN}^{2})^{2}(s - M_{3}^{2}He)} \times \\ &\frac{d\sigma^{pp \to pp}(s_{NN}, t_{N})}{dt}, \end{split}$$

イロン イヨン イヨン イヨン

- HRM calculated ³He(γpp)n energy distribution in agreement with experimental data.
- Note

$$s\sigma^{^{3}He(\gamma pp)n}(s) \sim \sigma^{pp}(s)$$

イロト イポト イヨト イヨト

 Outline
 Scattering Amplitude

 Introduction
 pp and pn breakup

 HRM of ³He
 Spectator Momentum Distributions

 Summary
 Polarization Transfer

Spectator Momentum Distributions

M. M. Sargsian and C. Granados, Phys. Rev. C 80, 014612 (2009)

$$\alpha_s \equiv \frac{E_s - p_{s,z}}{M_A/A} = \alpha_A - \alpha_{NN}$$

with

$$s_{NN} = M_{NN}^2 + E_{\gamma} m_n \alpha_{NN}.$$

- Asymmetry around α = 1 due to s⁻¹¹ dependence.
- *pp* distribution broader than *pn*.
- R drops around α = 1 from the suppression of same helicity two proton components of the nuclear wave function at small momenta

Outline	
Introduction	
HRM of ³ He	
Summary	Polarization Transfer

Polarization Transfer

M. M. Sargsian and C. Granados, Phys. Rev. C 80, 014612 (2009)

$$C_{z'} = \frac{\sum\limits_{\lambda_{2f},\lambda_{s},\lambda_{a}} \left\{ \left| \langle +, \lambda_{2f}, \lambda_{s} \mid M \mid +, \lambda_{A} \rangle \right|^{2} - \left| \langle -, \lambda_{2f}, \lambda_{s} \mid M \mid +, \lambda_{A} \rangle \right|^{2} \right\}}{\sum\limits_{\lambda_{1f},\lambda_{2f},\lambda_{s}} \left| \langle \lambda_{1f}, \lambda_{2f}, \lambda_{s} \mid M \mid +, \lambda_{A} \rangle \right|^{2}}.$$
(17)

Then

$$C_{z'} = \frac{(|\phi_1|^2 - |\phi_2|^2)S^{++} + (|\phi_3|^2 - |\phi_4|^2)S^{+-}}{2|\phi_5|^2S^+ + (|\phi_1|^2 + |\phi_2|^2)S^{++} + (|\phi_3|^2 + |\phi_4|^2)S^{+-}},$$
(18)

with,

$$S^{\pm,\pm}(t_{1},t_{2},\alpha,\vec{p}_{s}) = \sum_{\lambda_{A}=-\frac{1}{2}}^{\frac{1}{2}} \sum_{\lambda_{3}=-\frac{1}{2}}^{\frac{1}{2}} \left| \int \Psi_{3}^{\lambda_{A}} \mathsf{He,NR}(\vec{p}_{1},\lambda_{1}=\pm\frac{1}{2},t_{1};\vec{p}_{2},\lambda_{2}=\pm\frac{1}{2},t_{2};\vec{p}_{s},\lambda_{3}) m_{N} \frac{d^{2}p_{2,\perp}}{(2\pi)^{2}} \right|^{2} (19)$$

and
$$S^+ = S^{++} + S^{+-}$$
.

Outline	
Introduction	
HRM of ³ He	
Summary	Polarization Transfer

Polarization Transfer

$$C_{z'} = \frac{(|\phi_1|^2 - |\phi_2|^2)S^{++} + (|\phi_3|^2 - |\phi_4|^2)S^{+-}}{2|\phi_5|^2S^+ + (|\phi_1|^2 + |\phi_2|^2)S^{++} + (|\phi_3|^2 + |\phi_4|^2)S^{+-}},$$
(20)

Through previous assumptions for *pp* and *pn* breakup,

$$C_{z'}^{pp} \approx \frac{|\phi_3|^2 - |\phi_4|^2}{|\phi_3|^2 + |\phi_4|^2} \sim 0,$$
(21)

and,

$$C_{z'}^{pn} \approx \frac{|\phi_1|^2 + |\phi_3|^2 - |\phi_4|^2}{|\phi_1|^2 + |\phi_3|^2 + |\phi_4|^2} \sim \frac{2}{3},$$
(22)

(*) *) *) *) *)

Outline Introduction HRM of ³*He* Summary

Summary

- Large angle high energy breakup of a NN system in ³*He* has been studied in *pp* and *pn* breakup channels within the framework of the QCD hard rescattering model,HRM.
- HRM predicted energy dependencies, in accordance with counting rules, agree with recent experimental observations.
- Calculated HRM ${}^{3}He(\gamma pp)n$ differential cross section at $\theta_{c.m.}^{NN} = 90^{\circ}$ agrees well with experimental data without the introduction of adjustable parameters. (Note suppression from $|\phi_{3}| |\phi_{4}|$ factor with respect to pn breakup).
- HRM predicts a broader spectator's momentum distribution for *pp* breakup in relations to *pn* breakup.
- From the HRM, $C_{z'}^{pp}$ is suppressed in relation to $C_{z'}^{pn}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Introduction HRM of ³*He* Summary

Three-body/two-step reaction

- Dominant at low to intermediate beam energies ($E_{\gamma} \sim 200 {\rm MeV}$).
- HRM amplitude does not interfere with two-body/one-step amplitude.
- HRM cross section scales like s⁻¹² at large energies from second rescattering.

Outline Introduction HRM of ³*He* Summary

Introducing the light-cone wave function of ³He [?, ?, ?]

$$\Psi_{^{3}\text{He}}^{\lambda_{A},\lambda_{1},\lambda_{2},\lambda_{s}}(\alpha,p_{\perp}) = \frac{\Gamma_{^{3}\text{He}}^{\lambda_{A}}\bar{u}_{\lambda_{1}}(p_{NN}-p)\bar{u}_{\lambda_{2}}(p)\bar{u}_{\lambda_{s}}(p_{s})}{M_{NN}^{2} - \frac{m_{N}^{2} + p_{\perp}^{2}}{\alpha(1-\alpha)}}$$
(23)

defining quark wave function of the nucleon as

$$\Psi_{N}^{\lambda,\eta}(p,x,k_{\perp}) = \frac{u_{N}^{\lambda}(p)\Gamma_{N}\bar{u}_{\eta}(p-k)\psi_{s}^{\dagger}(k)}{m_{N}^{2} - \frac{m_{s}^{2}(1-x) + m_{q}^{2}x + (k_{\perp} - xp_{\perp})^{2}}{x(1-x)}}$$
(24)

イロト イポト イヨト イヨト

э

C	Dutline
Introd	uction
HRM d	of ³ He
Sur	nmary

L.L. Frankfurt and M.I. Strikman, Phys. Rep. 76, 214 (1981)

$$\Psi_{^{3}\text{He}}(\alpha, p_{\perp}, \alpha_{s}, p_{s,\perp}) = \sqrt{2}(2\pi)^{3} m_{N} \Psi_{^{3}\text{He,NR}}(\alpha, p_{\perp}, \alpha_{s}, p_{s,\perp})$$
(25)

A. Nogga A. Kievsky, H. Kamada, W. Gloeckle, L. E. Marcucci, S. Rosati and M. Viviani, Phys. Rev. C 67, 034004

(2003).

2

Outline Introduction HRM of ³*He* Summary

SU(6) Helicity Amplitudes

For *pp* scattering:

Farrar et al., (1979).

・ロト ・聞 と ・ ヨ と ・ ヨ と …

2

$$\begin{aligned}
\phi_1(\theta_{CM}) &= 144f(\theta_{CM}) + 144f(\pi - \theta_{CM}) & (26) \\
\phi_2(\theta_{CM}) &= 0 \\
\phi_3(\theta_{CM}) &= 56f(\theta_{CM}) + 68f(\pi - \theta_{CM}) \\
\phi_4(\theta_{CM}) &= -68f(\theta_{CM}) - 56f(\pi - \theta_{CM}) \\
\phi_5(\theta_{CM}) &= 0
\end{aligned}$$