Transversity in Hard Exclusive Electroproduction of Pions

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg Jefferson Lab, May 2010

Outline:

- Pion electroproduction to leading-twist accuracy
- Pion pole
- Transverse photon polarization
- Transversity
- Results
- Summary

based on work done in collaboration with S. Goloskokov, arXiv:0906.0460 [hep-ph]

The leading $\gamma^* p \to \pi^+ n$ amplitudes

$$\mathcal{M}_{0+,0+}(\pi^{+}) = \sqrt{1-\xi^{2}} \frac{e_{0}}{Q} \left\{ \langle \widetilde{H}^{(3)} \rangle - \frac{\xi^{2}}{1-\xi^{2}} \langle \widetilde{E}^{(3)}_{n.p.} \rangle - \frac{2m\xi Q}{1-\xi^{2}} \frac{\rho_{\pi}}{t-m_{\pi}^{2}} \right\},$$

$$\mathcal{M}_{0-,0+}(\pi^{+}) = \frac{e_{0}}{Q} \frac{\sqrt{-t'}}{2m} \left\{ \xi \langle \widetilde{E}^{(3)}_{n.p.} \rangle + 2mQ^{2} \frac{\rho_{\pi}}{t-m_{\pi}^{2}} \right\},$$

$$t' = t - t_0, \quad \xi \simeq x_{Bj}/2, \quad F^{(3)} = F^u - F^d$$

convolution:

convolution:

$$\langle F \rangle = \sum_{\lambda} \int_{-\xi}^{1} dx \mathcal{H}_{0\lambda,0\lambda}(x,\xi,Q^2,t=0) F(x,\xi,t)$$

GK: subprocess amplitudes worked out in modified pert. approach: LO pQCD + quark trans. momenta and Sudakov suppressions for $Q^2 \to \infty \Longrightarrow$ lead. twist (collinear approximation) (Sterman et al)

Double distributions

integral representation (i = u, d valence quarks)

$$\widetilde{H}^{i}(\bar{x},\xi,t) = \int_{-1}^{1} d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \,\delta(\beta + \xi\alpha - \bar{x}) \,\widetilde{f}_{i}(\beta,\alpha,t)$$

 \tilde{f}_i double distributions Mueller *et al* (94), Radyushkin (99) advantage - polynomiality automatically satisfied

useful ansatz with relation to PDFs (reduction formula respected)

$$\tilde{f}_i(\beta, \alpha, t) = \Delta q_i(\beta) \Theta(\beta) \exp\left[\left(\tilde{b}_i + \tilde{\alpha}'_i \ln(1/\beta)\right)t\right] \frac{3}{4} \frac{\left[(1-|\beta|)^2 - \alpha^2\right]}{(1-|\beta|)}$$

$$\begin{split} \tilde{\alpha}_h' &= 0.45 \, {\rm GeV}^{-2} \quad \tilde{b}_h = 0 \quad t\text{-dependence of Regge residue} \\ \text{Regge intercept and residue at } t = 0 \text{ included in PDF} \\ \tilde{E}_{n.p.} \text{ analogously, forward limit parameterized as} \\ \tilde{e}_u &= -\tilde{e}_d = \tilde{N}_e \beta^{-0.48} (1-\beta)^5 \\ \tilde{\alpha}_e' &= 0.25 \, {\rm GeV}^{-2} \quad \tilde{b}_e = 0 \text{ values fitted to data} \end{split}$$

The pion pole contribution

transverse amplitudes very small

full pion FF needed and non-pole \tilde{E} see Goloskokov-K(09),Bechler-Mueller (09) (analysis of $d\sigma/dt$ and $A_{UT}^{\sin(\phi-\phi_s)}$ using lead. twist with $\alpha_s^{\text{eff}} = 0.8$)

lead. twist accuracy: only 'pert. contr.' to pion FF (with $\alpha_s^{\text{eff}} \simeq 0.3$ about 1/3 of exp. value measured in same reaction $F_{\pi} - 2(08)$) fails with cross section by order of magnitude Mankiewicz et al (98), Frankfurt et al (99), Belitsky-Mueller (01),...

Target asymmetries in electroproduction

observable	dominant	$\gamma^* p \to MB$	low t'
	interf. term	amplitudes	behavior
$A_{UT}^{\sin(\phi-\phi_s)}$	LL	$\mathrm{Im}\big[\mathcal{M}_{0-,0+}^*\mathcal{M}_{0+,0+}\big]$	$\propto \sqrt{-t'}$
$A_{UT}^{\sin(\phi_s)}$	LT	$\mathrm{Im} ig[\mathcal{M}^*_{0-,++} \mathcal{M}_{0+,0+} ig]$	const.
$A_{UT}^{\sin(2\phi-\phi_s)}$	LT	$\mathrm{Im} ig[\mathcal{M}^*_{0\mp,-+} \mathcal{M}_{0\pm,0+} ig]$	$\propto t'$
$A_{UT}^{\sin(\phi+\phi_s)}$	ТТ	$\mathrm{Im}\big[\mathcal{M}^*_{0-,++}\mathcal{M}_{0+,++}\big]$	$\propto \sqrt{-t'}$
$A_{UT}^{\sin(2\phi+\phi_s)}$	ТТ	$\propto \sin heta_\gamma$	$\propto t'$
$A_{UT}^{\sin(3\phi-\phi_s)}$	ТТ	$\mathrm{Im}\big[\mathcal{M}^*_{0-,-+}\mathcal{M}_{0+,-+}\big]$	$\propto (-t')^{(3/2)}$
$A_{UL}^{\sin(\phi)}$	LT	$\operatorname{Im} \left[\mathcal{M}_{0-,++}^* \mathcal{M}_{0-,0+} ight]$	$\propto \sqrt{-t'}$

 ϕ azimuthal angle between lepton and hadron plane; ϕ_s orientation of target spin vector; θ_{γ} rotation from direction of incoming lepton to virtual photon one π^+ : all measured; detailed info. on amplitudes

Transverse photon polarization matters

HERMES(09) $Q^2 \simeq 2.5 \,\mathrm{GeV}^2$, $W = 3.99 \,\mathrm{GeV}$

 $\sin \phi_s$ moment very large does not seem to vanish for $t' \rightarrow 0$ $A_{UT}^{\sin \phi_S} \propto \text{Im} \left| M_{0-,++}^* M_{0+,0+} \right|$ n-f. ampl. $\mathcal{M}_{0-,++}$ required $\gamma_T^* \to P$ transitions substantial

JLab $F_{\pi} - 2$ black: σ_T blue: σ_L

W=2.22 GeV $Q^2 = 2.45 \text{ GeV}^2$

0.4

0.5

0.6

 σ_T large at large -t

Can $\mathcal{M}_{0-,++}$ be fed by ordinary GPDs?

lead. twist pion wave fct. $\propto q'\cdot\gamma\gamma_5$ (perhaps including ${f k}_\perp$)

 $\mathcal{M}_{0-,++} \propto t'$

twist-3 w.f.

 $\mathcal{M}_{0-,++} \propto \mathsf{const}$

helicity flip GPDs $(H_T, E_T, \widetilde{H}_T, \widetilde{E}_T)$ required Hoodbhoy-Ji (98), Diehl (01)

A twist-3 contribution

$$\mathcal{M}_{0-,\mu+}^{\text{twist}-3} = e_0 \sqrt{1-\xi^2} \int_{-\xi}^{1} d\bar{x} \left\{ \mathcal{H}_{0-,\mu+} \left[H_T^{(3)} - \frac{\xi}{1-\xi^2} (\xi E_T^{(3)} - \tilde{E}_T^{(3)}) \right] + (\mathcal{H}_{0+,\mu-} - \mathcal{H}_{0-,\mu+}) \frac{t'}{4m^2} \tilde{H}_T^{(3)} \right\}$$
$$\mathcal{M}_{0+,\mu+}^{\text{twist}-3} = e_0 \frac{\sqrt{-t'}}{2m} \int_{-\xi}^{1} d\bar{x} \left\{ (\mathcal{H}_{0+,\mu-} - \mathcal{H}_{0-,\mu+}) \tilde{H}_T^{(3)} + \left[(1-\xi) \mathcal{H}_{0+,\mu-} - (1+\xi) \mathcal{H}_{0-,\mu+} \right] E_T^{(3)} / 2 + \left[(1-\xi) \mathcal{H}_{0+,\mu-} + (1+\xi) \mathcal{H}_{0-,\mu+} \right] \tilde{E}_T^{(3)} / 2 \right\}$$

at small ξ and small t': H_T dominant in $\mathcal{M}_{0-,++}$ in $\mathcal{M}_{0-,-+}$ suppressed by t'/Q^2 twist-3 in long. amplitudes suppressed by $\sqrt{-t'}/Q$ subprocess amplitudes to be evaluated with twist-3 pion wave function \implies

The twist-3 pion distr. amplitude

projector
$$q\bar{q} \to \pi$$
 (3-part. $q\bar{q}g$ contr. neglected) Beneke-Feldmann (01)
 $\sim q' \cdot \gamma \gamma_5 \Phi + \mu_{\pi} \gamma_5 \left[\Phi_P - \imath \sigma_{\mu\nu} (\dots \Phi'_{\sigma} + \dots \Phi_{\sigma} \partial / \partial \mathbf{k}_{\perp \nu}) \right]$
definition: $\langle \pi^+(q') \mid \bar{d}(x) \gamma_5 u(-x) \mid 0 \rangle = f_{\pi} \mu_{\pi} \int d\tau e^{q'x\tau} \Phi_P(\tau)$
local limit $x \to 0$ related to divergency of axial vector current
 $\Longrightarrow \mu_{\pi} = m_{\pi}^2 / (m_u + m_d) \simeq 2 \text{ GeV}$ at scale 2 GeV (conv. $\int d\tau \Phi_P(\tau) = 1$)

Eq. of motion:
$$\tau \Phi_P = \Phi_{\sigma}/N_c - \tau \Phi'_{\sigma}/(2N_c)$$
solution: $\Phi_P = 1, \quad \Phi_{\sigma} = \Phi_{AS}$ Braun-Filyanov (90)

$${\cal H}_{0-,++}
eq 0$$
, Φ_P dominant, Φ_σ contr. $\propto t'/Q^2$

in coll. appr.: $\mathcal{H}_{0-,++}$ infr. sing. and double pole $1/(x-\xi)^2$ m.p.a. regular

twist-3 mechanism applied to wide-angle photo- and electroproductionno problem in coll. approx.Jakob-Huang-K-Passek (04)

Modeling H_T

small ξ : H_T should dominate; use double distr. ansatz; $H_T^a(x, 0, 0) = \delta^a(x)$ take transversity PDF from Anselmino et al (07)(08) large errors $\delta^a = 7.46 N_T^a x (1-x)^5 [q_a(x) + \Delta q_a(x)]$ $N_T^u = 0.5$ $N_T^d = -0.6$

combined analysis of transv. PDFs and Collins fcts. HERMES and COMPASS SIDIS and BELLE $e^+e^- \rightarrow h_1h_2X$ data $A_{UT}^{\sin(\phi+\phi_s)} \propto \delta \otimes \Delta \hat{\sigma} \otimes \Delta^N D_{\pi/q\uparrow}$

fixes scale of H_T , t-dependence free ($\alpha'_T = 0.45 \,\text{GeV}^{-2}$, $b_T = 0.9 \,\text{GeV}^{-2}$) link between transversity in inclusive and exclusive reactions

Results on unseparated π^+ cross section

data from HERMES 07

magenta lines: pion pole contr. (unseparated and transverse cross sections)

Results on target asymetries

 $Q^2 = 2.5 \,\mathrm{GeV}^2 \,W = 3.99 \,\mathrm{GeV}$

data on A_{UT} HERMES (08); A_{UL} HERMES(02) blue lines: without twist-3 contr. $A_{LU}^{\sin\phi} \propto \operatorname{Im}[\mathcal{M}_{0-,++}^* \mathcal{M}_{0-,0+}] \qquad A_{LL}^{\cos\phi} \propto \operatorname{Re}[\mathcal{M}_{0-,++}^* \mathcal{M}_{0-,0+}]$

Results continued

 $Q^2 = 2.5 \,\mathrm{GeV}^2 \,W = 3.99 \,\mathrm{GeV}$

data on A_{UT} HERMES (08) blue: only LL contr. other asymmetries: $|A_{UT}| < 0.1$ in agreement with exp.

Results on π^0 electroproduction

pion exchange absent

important to have data independent check of GPDs implicit check of pion f.f.

Other analysis of π^0 prod.: Ahmad et al (08) (subprocess viewed as form factors for $\gamma - \pi$ transitions under the action of vector and axial-vector currents)

Comparison with $F_{\pi} - 2$ data

Can we apply our approach for $W \leq 4 \,\text{GeV}$? (cf. ρ^0, ω, ρ^+ production - difficulties with val. quarks) our approach is designed for small $\xi(\leq 0.1)$ large $x(\geq 0.6)$ behaviour of GPDs not probed with little modifications of large x behavior of \widetilde{E} and H_T :

Implications of the $\pi\gamma$ transition form factor

surprising new data from Babar(09)

within m.p.a.:

 $Q^2 F_{\pi\gamma} = \sqrt{2} f_{\pi} C_0 \left[1 + \sum_n a_n(\mu_0) C_n / C_0 \right]$ strong supp. of high. Gegenb. terms at low Q^2 and at large Q^2 due to evolution low Q^2 : Φ_{AS} suffices (see fit to CLEO data) increasing Q^2 : higher Gegenb. terms become gradually more important

Braun-Diehl-K.

Fit to CLEO and Babar data (at scale 1 GeV): $a_2 = 0.25$ (fixed from lattice Braun(06)) $a_4 = 0.07 \pm 0.10$ $\sigma = 0.42 \pm 0.07 \text{ GeV}^{-1}$ trans. size parameter solid line blue K.-Raulfs Φ_{AS}

Summary

- analysis of π^+ electroproduction within handbag approach full pion form factor taken into account; \widetilde{H} , \widetilde{E} modeled with double distr. ansatz
- clear indication in data for contr. from $\gamma_T^* \to \pi$ transitions amplitude $\mathcal{M}_{0-,++}$ particular important
- within handbag approach $\mathcal{M}_{0-,++}$ is fed by transversity (chiral odd) GPDs accompanied by a twist-3 pion wave fct.
- H_T modeled with double distr., forward limit transversity PDFs taken from analysis of A_{UT} for SIDIS
- relates transversity in excl. processes to transversity in inclusive data
- fair description of data
- interesting check: $\pi^- p \rightarrow \mu^+ \mu^- n$ Compass? Pire et al