Refined analysis of DVCS

Andrei Belitsky

Arizona State University

Based on AB and D. Mueller 0809.2890 and (to appear)

Electroproduction of photons

$$
e(k) h\left(p_{1}\right) \rightarrow e\left(k^{\prime}\right) h\left(p_{2}\right) \gamma\left(q_{2}\right)
$$

Differential cross section:

$$
d \sigma=\frac{\alpha^{3} x_{\mathrm{B}} y}{8 \pi \mathcal{Q}^{2} \sqrt{1+\epsilon^{2}}}\left|\frac{\mathcal{T}}{e^{3}}\right|^{2} d x_{\mathrm{B}} d y d|t| d \phi
$$

$\epsilon \equiv 2 x_{\mathrm{B}} \frac{M}{\mathcal{Q}}$

- Bjorken variable: $x_{\mathrm{B}}=\frac{Q^{2}}{2 p_{1} \cdot q_{1}}$
- Lepton energy loss: $y=\frac{p_{1} \cdot q_{1}}{p_{1} \cdot k}$
- Momentum transfer: $t=\Delta^{2}$
- Photon mass: $\quad Q^{2}=-q_{1}^{2}$
- Scattering angle:

Building blocks

$$
\mathcal{T}^{2}=\left|\mathcal{T}^{\mathrm{BH}}\right|^{2}+\left|\mathcal{T}^{\mathrm{DVCS}}\right|^{2}+\mathcal{I}
$$

- Squared Bethe-Heitler:

calculated exactly

- Squared DVCS and interference amplitude:
calculated to twist- 3 accuracy

Light-cone dominance

Quantum mechanical incoherence of physical processes at short and large distance scales imply factorization:

Hadronic part of the Compton amplitude is computed to twist-3 accuracy:

$$
\begin{aligned}
T & =\mathrm{CFF}_{\tau=2}+\frac{1}{Q} \mathrm{CFF}_{\tau=3}+\ldots \\
& =C_{\tau=2} * \mathrm{GPD}_{\tau=2}+\frac{1}{Q} C_{\tau=3} * \mathrm{GPD}_{\tau=3}+\ldots
\end{aligned}
$$

BKM'01 framework: approximation of the leptonic tensor to leading and first subleading terms in $1 / Q$ expansion; this yields matching expansions for both leptonic and hadronic parts of the amplitude in inverse powers of the hard scale.

CFFs and Fourier harmonics

Within the systematic $1 / Q$ expansion, there is a one-to-one correspondence between Fourier harmonics and twist of contributing CFFs.

- Squared DVCS amplitudes:

$$
\begin{gathered}
\left|\mathcal{T}^{\mathrm{DVCS}}\right|^{2}=\frac{e^{6}}{y^{2} \mathcal{Q}^{2}}\left\{c_{0}^{\mathrm{DVCS}}+\sum_{n=1}^{2}\left[c_{n}^{\mathrm{DVCS}} \cos (n \phi)+s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right]\right\} \\
c_{0}^{\mathrm{DVCS}} \sim(\mathrm{tw}-2)^{2}, \quad c_{1}^{\mathrm{DVCS}}, s_{1}^{\mathrm{DVCS}} \sim \frac{\Delta}{Q}(\mathrm{tw}-2)(\mathrm{tw}-3), \quad c_{2}^{\mathrm{DVCS}}, s_{2}^{\mathrm{DVCS}} \sim \alpha_{s}(\mathrm{tw}-2)(\mathrm{tw}-2)_{\mathrm{gllon}}
\end{gathered}
$$

- Interference amplitude:

$$
\begin{gathered}
\mathcal{I}=\frac{ \pm e^{6}}{x_{\mathrm{B}} y^{3} t \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathcal{I}}+\sum_{n=1}^{3}\left[c_{n}^{\mathcal{I}} \cos (n \phi)+s_{n}^{\mathcal{I}} \sin (n \phi)\right]\right\} \\
c_{0}^{\mathrm{I}} \sim \frac{\Delta^{2}}{Q^{2}}(\mathrm{tw}-2), \quad c_{1}^{\mathrm{I}}, s_{1}^{\mathrm{I}} \sim \frac{\Delta}{Q}(\mathrm{tw}-2), \quad c_{2}^{\mathrm{I}}, s_{2}^{\mathrm{I}} \sim \frac{\Delta^{2}}{Q^{2}}(\mathrm{tw}-3), \quad c_{3}^{\mathrm{I}}, s_{3}^{\mathrm{I}} \sim \alpha_{s} \frac{\Delta}{Q}(\mathrm{tw}-2)_{\text {gluon }}
\end{gathered}
$$

Sources of 1/Q corrections

- Kinematical:
- Choice of scaling variables
- Exact vs. expanded form of process kinematics in lepton amplitudes
- "Dynamical":
- Target mass corrections (recovery of trace effects due to nonzero hadron mass/t-channel momentum)

$$
\left\langle p_{2}\right| \bar{\psi} \gamma_{\{\mu} D_{v\}} \psi\left|p_{1}\right\rangle=A\left(p_{\mu} p_{v}+\ldots\right)-B g_{\mu v}
$$

- High-twist parton correlations

$$
\left\langle p_{2}\right| \bar{\psi} G \ldots G \psi\left|p_{1}\right\rangle
$$

Scaling variables

- Generalized scaling variables (skewness/Bjorken):

$$
\eta=\frac{\left(q_{1}+q_{2}\right) \cdot\left(q_{2}-q_{1}\right)}{\left(q_{1}+q_{2}\right) \cdot\left(p_{1}+p_{2}\right)}, \quad \xi=-\frac{\left(q_{1}+q_{2}\right)^{2}}{2\left(q_{1}+q_{2}\right) \cdot\left(p_{1}+p_{2}\right)}
$$

$$
\delta=\left(M^{2}-\frac{1}{4} \Delta^{2}\right) / Q^{2}
$$

- Light-cone scaling variables (skewness):

$$
\tilde{\eta}=\frac{\left(q_{2}-q_{1}\right)_{+}}{\left(p_{1}+p_{2}\right)_{+}}=\frac{\eta}{\sqrt{1+4(\xi \delta)^{2}}}
$$

$$
\xi_{0}=\frac{x_{\mathrm{B}}}{2-x_{\mathrm{B}}}
$$

$\sim \mathrm{O}(5 \%)$ difference from scaling limit

Photon helicity amplitudes

- Efficient separation of power suppressed effects emerging in the leptonic part from corrections induced due to different choices of parametrization of the hadronic tensor
- The choice of target rest frame with z-axis along the virtual photon allows one to localize azimuthal angle dependence in leptonic helicity amplitudes
- Concise and systematic calculational scheme
- Straightforward reduction to previously used harmonic expansion

"Uncertainties" in hadronic tensor

Dependence of the hadronic helicity amplitudes on the choice of parametrization

- Jlab kinematics $(E=5.7 \mathrm{GeV})$: $\quad t^{\prime}=-0.3 \mathrm{GeV}^{2}, \quad x_{\mathrm{B}}=0.3, \quad \mathcal{Q}^{2}=1.5 \mathrm{GeV}^{2}$

$$
\begin{gathered}
\mathcal{T}_{++}^{\mathrm{DVCS}}=\left\{\begin{array}{l}
0.996 \\
1.003
\end{array}\right\} \mathcal{H}+\left\{\begin{array}{c}
0.011 \\
0.008
\end{array}\right\} \mathcal{H}_{3}+\left\{\begin{array}{ll}
0.019 \\
0.000
\end{array}\right\} \mathcal{H}_{T}
\end{gathered} \begin{aligned}
& \text { BKM } \\
& \mathrm{VGG}
\end{aligned}
$$

- HERMES kinematics $(E=27.5 \mathrm{GeV}): \quad t^{\prime}=-0.3 \mathrm{GeV}^{2}, \quad x_{\mathrm{B}}=0.1, \quad \mathcal{Q}^{2}=2.5 \mathrm{GeV}^{2}$

$$
\frac{\left(2-x_{\mathrm{B}}\right) \mathcal{Q} \mathcal{T}_{0+}^{\mathrm{DVCS}}}{\sqrt{2 \widetilde{K}}}=\left\{\begin{array}{l}
1.03 \\
1.01
\end{array}\right\} \mathcal{H}_{3}^{\mathrm{eff}}+\left\{\begin{array}{r}
-0.01 \\
0.00
\end{array}\right\} \mathcal{H}+\left\{\begin{array}{l}
-0.04 \\
-0.02
\end{array}\right\} \mathcal{H}_{T}
$$

Our consideration assumes validity of a hierarchy of hadronic scales associated with hadronic matrix elements of higher twist operators, i.e.,

$$
\varepsilon^{2} \text { tw }-2 \gg \frac{\mathrm{tw}-4}{Q^{2}}
$$

Squared DVCS amplitude

Expansion of squared DVCS amplitude:

$$
\begin{aligned}
& \left|\mathcal{T}^{\mathrm{DVCS}}\right|^{2}=\frac{1}{\mathcal{Q}^{2}} \sum_{a=-, 0,+} \sum_{b=-, 0,+} \mathcal{L}_{a b}(\lambda, \phi) \mathcal{W}_{a b}, \quad \mathcal{W}_{a b}=\mathcal{T}_{a+}^{\mathrm{DVCS}}\left(\mathcal{T}_{b+}^{\mathrm{DVCS}}\right)^{*}+\mathcal{T}_{a-}^{\mathrm{DVCS}}\left(\mathcal{T}_{b-}^{\mathrm{DVCS}}\right)^{*} \\
& \mathcal{L}_{a b}(\lambda, \phi)=\varepsilon_{1}^{\mu *}(a) \mathcal{L}_{\mu \nu}(\lambda) \varepsilon_{1}^{\nu}(b)={\underset{\gamma}{ }}^{*}(a) \\
& \operatorname{munn}_{\gamma^{*}(b)}
\end{aligned}
$$

- BKM approximation is improved by exact account for kinematically suppressed contributions in leptonic helicity amplitudes.
- One-to-one correspondence between helicity amplitudes and Fourier harmonics (no mixture!)
- Exact amplitudes are built from mass-corrected QED "splitting functions" (of lepton energy loss y):

$$
\begin{aligned}
2-2 y+y^{2} & \Rightarrow \frac{2-2 y+y^{2}+\frac{\epsilon^{2}}{2} y^{2}}{1+\epsilon^{2}} \\
\left\{\begin{array}{c}
2-y \\
-\lambda y
\end{array}\right\} & \Rightarrow \frac{1}{1+\epsilon^{2}}\left\{\begin{array}{c}
2-y \\
\left.-\lambda y \sqrt{1+\epsilon^{2}}\right\}
\end{array}\right\}
\end{aligned}
$$

Numerical estimates I

Jlab kinematics $\left(E=5.7 \mathrm{GeV}, t=-0.3 \mathrm{GeV}^{2}, x_{\mathrm{B}}=0.3, Q^{2}=2 \mathrm{GeV}^{2}\right)$:

- \mathcal{H} only (admixture of higher harmonics arises from hadronic tensor):

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =[2.99-0.53 \cos \phi+0.01 \cos (2 \phi)] \mathcal{H} \mathcal{H} \mathcal{L}^{*} \\
& =[2.97-0.35 \cos \phi+0.01 \cos (2 \phi)] \mathcal{H} \mathcal{H} \mathcal{L}^{*}
\end{aligned}
$$

$\longleftarrow \quad$ BKM hadron.
\longleftarrow VGG hadron.

- twist-3 contamination of twist-2 (tiny):

$$
2.99\left[\mathcal{H \mathcal { H }}^{*}+0.003\left(\mathcal{H}_{3} \mathcal{H}^{*}+\mathcal{H}_{3}^{*} \mathcal{H}^{\prime}\right)\right]
$$

\longleftarrow exact

- twist-2 contamination of twist-3 (strong):

$$
0.24\left[\mathcal{H} \mathcal{H}_{3}^{*}+\mathcal{H} \mathcal{H}_{3}-2.19 \mathcal{H} \mathcal{H} *+0.05 \mathcal{H}_{3} \mathcal{H}_{3}^{*}\right] \cos (\phi) \quad \longleftarrow \text { exact }
$$

- cf. BKM approximation:

$$
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}=3.34 \mathcal{H} \mathcal{H}^{*}+0.29\left(\mathcal{H} \mathcal{H}_{3}^{*}+\mathcal{H}_{3} \mathcal{H} \mathcal{H}^{*}\right) \cos \phi \quad \longleftarrow \text { BKM approx }
$$

Interference

Spinless target as an example:

$$
\mathcal{I}=\frac{ \pm e^{6} F(t)}{t \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left[\left(\mathcal{L}_{++}^{P}+\mathcal{L}_{--}^{P}\right) T_{++}+\left(\mathcal{L}_{0+}^{P}+\mathcal{L}_{0-}^{P}\right) T_{0+}+\left(\mathcal{L}_{-+}^{P}+\mathcal{L}_{+-}^{P}\right) T_{-+}+\text {c.c. }\right]
$$

with leptonic helicity amplitudes

$$
\begin{aligned}
& \mathcal{L}_{+a+b}^{P}+\mathcal{L}_{-a-b}^{P} \\
& =-\frac{1}{2 x_{\mathrm{B}} y^{3}}\left\{\sum_{n=0}^{3} C_{a b}(n) \cos (n \phi)+i \lambda \sum_{n=1}^{2} S_{a b}(n) \sin (n \phi)\right\}=\operatorname{mmn}_{\gamma^{*}(a)}^{J_{\mu}}
\end{aligned}
$$

- BKM approximation is improved by exact account for kinematically suppressed contributions in leptonic helicity amplitudes.
- One-to-one correspondence between helicity amplitudes and Fourier harmonics is lost!
- Treatment of hadronic amplitudes is plagued by uncertainties in the choice of the Lorentz tensor decomposition (e.g., exact vs. light-cone parametrization)

$$
\begin{aligned}
& \mathcal{T}_{++}^{\mathrm{DVCS}}=\mathcal{H}+\mathcal{O}\left(1 / \mathcal{Q}^{2}\right), \\
& \mathcal{T}_{0+}^{\mathrm{DVCS}}=\frac{\sqrt{2}}{2-x_{\mathrm{B}}} \frac{\widetilde{K}}{\mathcal{Q}} \mathcal{H}_{3}^{\mathrm{eff}}+\mathcal{O}\left(1 / \mathcal{Q}^{3}\right)
\end{aligned}
$$

Numerical estimates IIa

Jlab kinematics $\left(E=5.7 \mathrm{GeV}, t=-0.3 \mathrm{GeV}^{2}, x_{\mathrm{B}}=0.3, Q^{2}=2 \mathrm{GeV}^{2}\right)$:

- \mathcal{H} only:

$$
\begin{aligned}
I & =[-2.34-7.54 \cos \phi+1.21 \cos (2 \phi)] \operatorname{Re} \mathcal{H} \\
& =[-2.36-7.56 \cos \phi+0.93 \cos (2 \phi)] \operatorname{Re} \mathcal{H}
\end{aligned}
$$

\longleftarrow BKM hadron.
\longleftarrow VGG hadron.

- twist-3 contamination of twist-2 (small):

$$
\begin{aligned}
& -2.43 \operatorname{Re}\left[\mathcal{H}-0.06 \mathcal{H}_{3}\right] \\
& -7.54 \operatorname{Re}\left[\mathcal{H}+0.02 \mathcal{H}_{3}\right] \cos \phi
\end{aligned}
$$

- twist-2 contamination of twist-3 (strong):

$$
-0.77 \operatorname{Re}\left[\mathcal{H}_{3}-1.57 \mathcal{H}\right] \cos (2 \phi)
$$

\longleftarrow exact

- cf. BKM approximation:

$$
I=[-2.3-12.9 \cos \phi] \operatorname{Re} \mathcal{H}-1.1 \cos (2 \phi) \operatorname{Re} \mathcal{H}_{3}
$$

\longleftarrow BKM approx.

Hot fix

An approximation to exact results which accounts for the most significant source of power suppressed effects.

- Replace BKM harmonics by exact ones.
- Ignore admixture of harmonics induced by power suppressed effects for the same hadron helicity amplitude.

$$
\begin{array}{lll}
s_{1} \sin \phi & \text { exact } & S_{1}^{++} \sin \phi+S_{2}^{++} \sin (2 \phi) \xrightarrow{\text { hot fix }} S_{1}^{++} \sin \phi \\
c_{1} \cos \phi & \\
& \\
\text { exact } & C_{1}^{++} \cos \phi+C_{2}^{++} \cos (2 \phi)+C_{3}^{++} \cos (3 \phi) & \\
\text { hot fix } & C_{1}^{++} \cos \phi
\end{array}
$$

Here

$$
\begin{aligned}
& S_{++}(n=1)=\frac{8 K(2-y) y}{1+\epsilon^{2}}\left\{1+\frac{1-x_{\mathrm{B}}+\frac{\sqrt{1+\epsilon^{2}}-1}{2}}{1+\epsilon^{2}} \frac{t^{\prime}}{\mathcal{Q}^{2}}\right\} \\
& C_{++}(n=1)=\frac{-16 K\left(1-y-\frac{\epsilon^{2}}{4} y^{2}\right)}{\left(1+\epsilon^{2}\right)^{5 / 2}}\left\{\left(1+\left(1-x_{\mathrm{B}}\right) \frac{\sqrt{\epsilon^{2}+1}-1}{2 x_{\mathrm{B}}}+\frac{\epsilon^{2}}{4 x_{\mathrm{B}}}\right) \frac{x_{\mathrm{B}} t}{\mathcal{Q}^{2}}-\frac{3 \epsilon^{2}}{4}\right\} \\
& -4 K\left(2-2 y+y^{2}+\frac{\epsilon^{2}}{2} y^{2}\right) \frac{1+\sqrt{1+\epsilon^{2}}-\epsilon^{2}}{\left(1+\epsilon^{2}\right)^{5 / 2}}\left\{1-\left(1-3 x_{\mathrm{B}}\right) \frac{t}{\mathcal{Q}^{2}}\right. \\
& \left.\quad+\frac{1-\sqrt{1+\epsilon^{2}}+3 \epsilon^{2}}{1+\sqrt{1+\epsilon^{2}}-\epsilon^{2}} \frac{x_{\mathrm{B}} t}{\mathcal{Q}^{2}}\right\},
\end{aligned}
$$

Numerical estimates IIb

Jlab kinematics
HERMES kinematics

Odd harmonics

Even harmonics

Significant deviations from BKM'01 for Jlab kinematics.

DVCS on the proton

Jlab kinematics $\left(E=5.7 \mathrm{GeV}, t=-0.2 \mathrm{GeV}^{2}, x_{\mathrm{B}}=0.3, Q^{2}=1.5 \mathrm{GeV}^{2}\right)$:

Cross section

Dynamical higher twists

$$
A=\left|A_{\tau=2}+A_{\tau=4}+\ldots\right|^{2} \approx\left|A_{\tau=2}\right|^{2}\left(1+2 \operatorname{Re}\left(A_{\tau=2}^{*} A_{\tau=4}\right) /\left|A_{\tau=2}\right|^{2}\right)
$$

Renormalon estimates of twist-four effects:

$$
A_{\tau=4}=\frac{\Lambda^{2}}{Q^{2}} C * \mathrm{GPD}_{\tau=2}
$$

Moderate effects assuming that the scale Λ^{2} of the twist four contribution is identical to the one in DIS.

Conclusion

- Approach provides analytical framework for analysis of elecroproduction observables
- Exact treatment of kinematical effects is crucial for current Jlab kinematics
- Theory of dynamical higher twist effects is needed

