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Previous and Current Work

e Earlier study by J. Carnahan, H. Honkanen, S.
Liuti, Y. Loitiere, and P. Reynolds (D79, PRD,
2009)

— The first version of the code did not readily extend
to studying empirical PDF functions, but used data

only
e Current work by D. Perry, K. Holcomb, S. Liutj,
S. Taneja

— Variations of functional forms of structure
functions



Motivation

* Neural networks (strictly, artificial neutral
networks or [A]JNNs) have been widely applied to
PDFs (http://sophia.ecm.ub.es/nnpdf/) to study
the global properties of systems as they evolve
from initial conditions.

* The network makes changes to its connections
upon being informed of the “correct” result via a
cost function. The aim is to minimize the cost.

* NNs are a nonlinear statistical data-modeling
tool. Among other things they can be used to
find patterns in data.



Learning in Neural Networks

 ANNSs can learn via supervised learning,
unsupervised learning, or reinforcement learning.
Supervised learning is the “classical” ANN.

e Supervised learning: a set of examples is given;
the goal is to force the data to match the
examples as closely as possible. The cost
function here implicitly includes knowledge about
the domain.

* Unsupervised learning: data and the cost function
are given and the network finds the minimum of
the cost function without guidance.



Self-Organizing Maps (SOMs)

* A self-organizing map is a type of neural network
with unsupervised learning. Unsupervised
learning is related to the statistical problem of
density estimation, i.e. the study of an otherwise
unobservable probability density distribution
function.

 The SOM reflects an organization in which
neighboring locations of the map correspond to
similarity in properties of the data.

* |nvented by Teuvo Kohonen and sometimes
called Kohonen maps.



Training and Mapping

* Training: the map is divided into cells. Each cell is
populated randomly with a weight vector. The
weight vectors are presented with example
vectors. The cost function is minimized and the
weight vectors are adjusted to be closer to the
exemplars.

* Mapping: when presented with new data the
algorithm finds the best-matching weight vector
for each item and assigns that item to the
corresponding cell.



Learning in SOMs

 Competitive learning: for a given example data
vector, the cost function is computed for all
weight vectors. The most similar weight vector is
the best matching unit (BMU) and it is adjusted to
be closer to the exemplar, but so are its
immediate neighbors. The adjustment for node v
is determined by

W.(t+1) =W, @)+ @(v,t)(x(t)(l_j(t)— Wv(r))

* The quantity O(v,t) is a function of the distance
between the BMU and node v and becomes
smaller with each iteration (“time”). The quantity
a is the learning coefficient and it decreases
monotonically.



Example: Organizing Colors (Blue, Red,
Yellow, Green, Magenta)

“Colors” Example




Example Application
Galaxy Classification

Some work by A. Miller and M. Coe (MNRAS
1996)

Automated plate scanner identified images of
objects in the Coma cluster (over 1,000 identified
galaxies, 99 Mpc distant)

SOM trained with images from one region of the
cluster, applied to other regions to classify the
new images

SOM required only a few hundred examples to be
trained (other classification methods required
thousands)



HST Image of Part of the Coma Cluster




SOMPDF

* We have adopted our “neighborhood
function” O to be

Rh (n): 15( ntral'n — 1 )Km
ntrain

R, is the size of the map, n

s the iteration, n,,;, is the
total number of iterations. The
initial layout may be represented :
by the figure to the right.




SOM Algorithm lllustrated
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on map Learning: adjacent nodes readjust

according to similarity criterion

Final Step : clusters of similar functions distribute themselves on the map.



SOMPDF Method

Initialization: a set of “map PDFs” (weight vectors) is formed by selecting at random

from existing PDF functions and varying their parameters.
Baryon number and momentum sum rules are imposed at every step.

These input PDFs are used to initialize the map.

Training: Another set of exemplar PDFs is generated and is used to train the map.
The similarity is tested by comparing the PDFs at given (x,Q?) values. The new
map PDFs are obtained by the SOM algorithm.




Minimization Through Genetic
Algorithm

* Once the map is trained, we select a subset of
the training PDFs with the best values of .
These are used to generate a new set of
training vectors. The cycle is repeated to

convergence.
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Mixing

* |In generating the PDFs (for the map and for the
training) we need to avoid introducing a
functional bias

* Thus we mix together variations of different
structure functions

— Random perturbations are used to generate a variant
of a standard set of structure functions—currently
based on GRV, MRST, AMP. We select some number
of these varied functions, then combine them in a
weighted-average linear combination to obtain a final

candidate PDF.
— Sum rules are enforced on each candidate “mixed”
PDF



Example Mixed PDF
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Error Analysis

Treatment of experimental error is complicated
by the incompatibility of different experiments

Treatment of theoretical error is complicated
because the theoretical errors and their
correlations are poorly understood

We have defined a statistical error on an
ensemble of SOMPDF runs

More detailed error analysis using a Lagrange
multiplier technique is underway



Preliminary Results

 Up valence, strange, down valence, and up-bar quark distributions at
Q?=7.5 GeV?. The size of the map was 5x5 with 43 runs. The error bands

u_v(x,Q"2)

d v(x,Q"2)

are the statistical error from these runs.
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Extension to GPDs

* SOMs find similarities in the input data
without a training target.

* They have been used in theoretical physics
approaches to critical phenomena, to the
study of complex networks, and in general for

the study of high dimensional non-linear data

(see e.g. Der, Hermann, Phys.Rev.E (1994), Guimera
et al., Phys. Rev.E (2003) )



* SOMs have been used
in theoretical physics
approaches to critical
phenomena, to the
study of complex
networks, and in
general for the study
high dimensional hon

linear data

(see e.g. Der, Hermann,
Phys. Rev. E (1994),
Guimera et al., Phys.
Rev.E (2003) )

e Study of particle shape and
size, N. Laitinen et al. 2001

U-matrix 1.33 Roundness Qo 767 Asoect Ratio 0499

Equiv. Diametery 3.12 Convex Area Qsz FuIIRano H4)00561
d

Fig. &, The U-matrix and the variable mformation for the model particles.



We are studying similar characteristics of SOMs to devise a fitting

procedure for GPDs: our new code has been made flexible for this use

Main question: Which experiments, observables, and with what precision are th 2y

relevant for which GPD components?

From Guidal and Moutarde, and Moutarde analyses (2009)
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8 GPD-related functions
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17 observables (6 LO) from HERMES +
Jlab data

“a challenge for phenomenology...” (Moutarde) + “theoretical bias”



The 8 GPDs are the dimensions in our analysis
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Conclusions and Future Work

 We have developed a method to find in an
unbiased manner PDFs with minimum ¥? and
have performed a preliminary analysis of the
error.

* Next steps: larger maps (will require parallel
runs), effects of varying parameters,
applications to more varied datasets
(polarized scattering)

e Next: onward to GPDs



