Channel coupling effects in exclusive meson photo and electroproduction at high momentum transfers

A good news: it allows to understand long standing problems
A bad news: quarks are not explicitly needed at JLab6
JLab12 and higher?
Semi inclusive reactions?

VCS and DVCS: Phys. Rev. C76, 052201(R) 2007 Charged pion: Phys. Lett. B685, 146 (2010) Neutral pion: arXiv:1004.1949 [hep-ph] φmeson: unpublished yet

Channel Coupling

- Consequence of unitarity
- Low energies: many flat channels ↔ EBAC
- Intermediate energies:
 - one channel dominates: p
 - Forward peaked cross section
- High energies?
- Two examples:
 - Large t
 - Large Q²

 $\gamma\,\textbf{p}\rightarrow\textbf{p}$ V: dominant processes

$p(\gamma, \pi^+)$ n: Regge poles

Regge Pole Approach
t channel: π, ρ
u channel: p, Δ

•Linear trajectories: forward/backward •Saturating trajectories: intermediate angles -Poor man quark model!! -Consistent with scaling

p(γ,π⁺)n: cuts

$p(\gamma, \pi^+)n$: scaling

No quarks explicitly needed!
Natural explanation of scaling and deviations at low energies

$p(e,e'\pi^0)p$: issues

- Node around t=0.5 GeV² at Q²=0
- This node disappears when Q2≠0
- Around Q²= 2—3 Gev², the measured cross section exceeds by a factor 5 the Regge pole extrapolation
- Solution: coupling to the charged ρ production channels

p(e,e'π⁰)p

p(e,e'π⁰)p: Regge cut

Degenerate Scheme + Cut

$$e^{-i\pi\alpha_{\omega}(t)} \left(\frac{s}{s_{0}}\right)^{\alpha_{\omega}(t)-1} F_{em}(Q^{2})$$
$$\alpha_{\omega}(t) = \alpha_{\omega}(0) + \alpha'_{\omega}t$$
$$= 0.44 + 0.9t$$

$$e^{-i\pi\alpha_c(t)} \left(\frac{s}{s_0}\right)^{\alpha_c(t)-1} G(Q^2, t)$$

$$\alpha_c(0) = \alpha_\omega(0) + \alpha_P(0) - 1 = 0.44$$

$$\alpha'_c = (\alpha'_\omega \times \alpha'_P)/(\alpha'_\omega + \alpha'_P) = 0.2$$

Non Degenerate **•** Trajectory (GLV scheme)

$$\frac{-1+e^{-i\pi\alpha_{\omega}(t)}}{2}\left(\frac{s}{s_{0}}\right)^{\alpha_{\omega}(t)-1}F_{em}(Q^{2})$$

p(e,e' π^0)p: CEX and ωp cuts

p(e,e' π^0)p: ρ^+ n and $\rho^+\Delta$ cuts

- •p⁺ cross section: large at Q² ≈ 3 GeV² (CLAS) small at Q²=0
- • $\rho \rightarrow \pi$ cross section larger than $\omega \rightarrow \pi$ cross section
- •∆ intermediate states as important as neutron one

$P(e,e'\rho^+)N$

p(e,e' ρ+)n

ω vs ρ absorption cross sections

p(e,e' π^0)p: ρ^+ n and $\rho^{+-}\Delta$ cuts

 $T_n + T_{\Delta^0} + T_{\Delta^{++}} \sim 1.75 \div 2.1 \ T_n$

JLab HallA kinematics

JLab HallB

•Unpolarized Xsections: → Talk by V. Kubarovsky
•Single Spin Asymmetries (SSA)

 $p(e,e'\pi^0)p$: low Q^2

- •Does not compromise the good agreement at Q2=0
- •Helps to get rid of the node, for Q2<1 GeV²
- •A fine tuning of the EM form factors may improve the picture

Conclusion

- •Hadronic picture of the light quark sector:
 - •large t (scaling)
 - •large Q² (DVCS, π^0 ,...)
 - No quark explicitly needed
- Consistent links between various channels
- •Comes from the large production and absorption cross sections of the ρ
- •Coupling to the p⁰ survives at high energy
- •Coupling to the ω and ρ^{\pm} suppressed at high energy
- → Heavy quark sector at JLab12 (φ, J/ψ,....)
 •Weak channel coupling ?
 - •Quark/gluon picture makes more sense ?

Approach to scaling

- •2 gluon exchange scales for s> 12 GeV²
- •The oscillation around scaling comes from coupling to the ω channel
- •No data above $E\gamma = 4.5 \text{ GeV}$
- •Coupled channel effects suppressed at high energies
- \rightarrow 12 GeV+ ? \rightarrow p(e,e' φ)p

Channel coupling effects in exclusive meson photo and electroproduction at high momentum transfers

> VCS and DVCS: Phys. Rev. C76, 052201(R) 2007 Charged pion: Phys. Lett. B685, 146 (2010) Neutral pion: arXiv:1004.1949 [hep-ph] ϕ meson: unpublished yet