Fixed Angle Scattering and the Transverse Structure of Hadrons

Exclusive Reactions at High Momentum Transfer Jefferson Accelerator Facility, May. 18, 2010 George Sterman, Stony Brook

- Some classic results and
- Recalling some work with J. Botts and M. Sotiropoulos.
- Primarily on hadron-hadron reactions, but with implications for photon-induced processes.
 - I. Quark counting, the valence state and geometric counting
 - II. Splitting the hard scattering (Landshoff)
 - III. The return of (approximate) parton counting at wide angles

IV. Exchanging quarks and ratios of particle-antiparticle to particle-particle elastic scattering

V. Conclusions

- I. Quark counting, the valence state and geometric counting
 - Parton model applied to high-energy elastic scattering (1973: Brodsky, Farrar; Matveev, Muradyan, Tavkhelidze)
 - Elastic scattering is through the valence state:
 - Parton picture: in c.m., wave functions are Lorentz-contracted.
 - -large t requires all n_i valence (anti-)quarks of hadron i in a region of area $1/Q^2$ for both incoming hadrons.
 - -Likelihood is $\sim \left(rac{1}{Q^2} \ imes \ rac{1}{\pi R_H^2}
 ight)^{n_H-1}$ for each hadron.
 - Geometric picture: Must be true of both incoming and outgoing states, for overlap of wave functions.
 - Scaling: assume that otherwise the amplitude is a function only of the scattering angle.
 - The result, at fixed s/t (c.m. scattering angle):

$$rac{d\sigma}{dt} = rac{f(s/t)}{s^2} \, \left(rac{m^2}{s}
ight)^{\Sigma_{i=1}^4 \, (n_i-1)}$$

How it looks:

And also:

• The corresponding elastic amplitude

(1979: Brodsky and Lepage, Efremov and Radyushkin)

$$egin{aligned} \mathcal{M}(s,t;h_i) &= \int egin{smallmatrix} rac{4}{1!} & [dx] \ \phi(x_{m,i},\lambda_{m,i},h_i;\mu) \ & imes M_Higg(rac{x_{n,i}x_{m,j}p_i\cdot p_j}{\mu^2};\lambda_{n,i},h_iigg) \end{aligned}$$

with factorized & evolved valence (light-cone) wave functions $\phi(x_{m,i}, \lambda_{m,i}, h_i; \mu)$, and with

$$[dx] = dx_{1,i} dx_{2,i} dx_{3,i} \, \delta \left(1 - \sum_{n=1}^{S} x_{n,i} \right)$$

for helicities: h_i (hadron) $\lambda_{n,i}$ (quarks)

- In principle straightforward, but:
 - For NN scattering, M_H is thousands of diagrams even at tree level, although with recent advances, $3 \rightarrow 3$ should be manageable.
 - Knowledge of the wave functions is incomplete.
 - Soft effects at higher orders are not under full control here. (Duncan and Mueller, 1979 and see below)

II. Splitting the hard scattering (Landshoff)

Two independent scatterings for meson-meson scattering

- $1/Q \rightarrow R_H$ in amplitude $\Rightarrow 1/s \rightarrow R_H^2$ in cross section.
- This geometric configuration gives for NN at fixed angle (s/t) (1974: Landshoff)

$$rac{d\sigma}{dt}=rac{f(s/t)}{s^2}\,\left(rac{1}{s\,\pi R_H^2}
ight)^6$$

ullet And for $s\gg -t\gg \Lambda_{
m QCD}$ it gives

$$rac{d\sigma}{dt}=rac{F(s)}{t^2}\,\left(\!rac{1}{t\,\pi R_H^2}\!
ight)^{\!6}$$

• Experiment: the latter works, the former doesn't.

- **III.** The return of (approximate) parton counting at wide angles
 - Resolution of the single/triple scattering ambiguity in radiation:

Scattering of isolated color charges wants to produce radiation in the incoming and outgoing directions. Configurations without such radiation are suppressed unless *b* is small. The full amplitude is the result of a competition between geometric enhancement and radiation suppression.

• *b* is conjugate to $Q = \sqrt{-t}$. At -t increases toward *s*, radiative corrections force the *b*'s to $1/\sqrt{s}$ and geometric picture should be recovered approximately.

(\sim 1980: Brodsky, Lepage; Mueller; Landshoff, Pritchard)

• Color-singlet hadrons \Rightarrow

$$egin{aligned} \mathcal{M}(s,t) &= rac{N}{stu} {}_{f}^{5} {}_{0}^{1} rac{dxdy}{x^{2}y^{2}(1-x-y)^{2}} \ & imes {}_{f}^{J} db_{1} db_{2} \ \mathrm{Tr_{color}} \left[egin{matrix} m{U}(b_{i}Q) M^{1}M^{2}M^{3} \ & imes {}_{i=1,2,3,4}^{\Pi} \ & \Psi_{H_{i}}(x,y,b_{1},b_{2}) \end{aligned}
ight.$$

• The Trace $[U(b_iQ)M^1M^2M^3]$ ties color together and includes ϵ_{abc} for colors of three quark, with possible color exchange in each hard scattering $M^i(x_ip_j)$.

• The wave functions behave as

 $\Psi(x, y, b_i) \sim \Psi_{NP}(x, y, b_i) \exp[-\ln^2(1/Qb_i)]$

$$ightarrow \phi_{asy}(x_j) \exp[-\ln^2(1/Qb_i)]$$

• This gives the asymptotic amplitude, an example of "Sudakov resummation":

(1979: Botts and Sterman)

$$egin{aligned} \mathcal{M}(s,t) &= rac{N}{stu} {}_{f}^{\Sigma} {}_{0}^{1} rac{dxdy}{x^{2}y^{2}(1-x-y)^{2}} & \prod_{i=1,2,3,4} \phi_{i,asy}(x,y) \ & imes {}_{/} db_{1} db_{2} \ \mathrm{Tr}_{\mathrm{color}} \left[oldsymbol{U}(b_{i}Q) M^{1} M^{2} M^{3}
ight] \ & imes \mathrm{e}^{-S_{1}(b_{i}Q) - S_{2}(b_{i}Q) - S_{3}(b_{i}Q)} \end{aligned}$$

- At large Q for each scattering, radiation suppression drives the hard scatterings back together.
- At moderate $(xQ)^2$, $(yQ)^2$, amplitude is dominated by the "boundary conditions," $\Psi_{NP}(x, y, b_i)$ rather than asymptotic behavior.

IV. Exchanging quarks and ratios of particle-antiparticle to particleparticle

elastic scattering

- All this applies to NN, $\bar{N}N$, etc.
- Computations are simpler for the "triple scattering" picture, and can be compared.
- Early on, contrast was made between gluon and quark exchange processes. pQCD factorization has both.

(Ramsey and Sivers, 1992, after Gunion, Blankenbecler, Brodsky, 1973)

FIG. 2. Landshoff diagram for fixed-angle large-s NN scattering.

FIG. 3. Typical diagram for the quark-interchange mechanism in exclusive NN scattering.

- Quark exchange, of course, is not possible for $p\bar{p} \rightarrow p\bar{p}$. For pp there are 2^3 ways of connecting incoming and outgoing quarks compared to only one for $p\bar{p}$.
- The BNL experiments: ratios seems roughly consistent with this counting!

$$R_N = rac{rac{d\sigma_{Nar{N}}}{dt}}{rac{d\sigma_{NN}}{dt}}|_{90~\mathrm{deg}} \sim rac{1}{40}$$

- Caveat in any pQCD picture how to reform an antisymmetric color combination of quarks when they are exchanged?
- Sotiropoulos (1996) studied this issue in the Landshoff scattering picture. He found that it works qualitatively only with a "color randomization" picture in which the factor $[U(bQ) \prod_i M^i]$ is independent of the flavor flow. He found $R_p \sim 1/30$ at ninety degrees with color randomization, $\sim 1/3$ without.

FIG. 3. Soft gluon exchange and color mixing for the direct (ttt), (a), and the single interchange (utt) channel, (b), in baryon-baryon elastic scattering. Hard gluons are not shown. Interpreted as color graphs, these diagrams represent contributions to U_{222} , (a), and U_{211} , (b).

• Randomization possibly natural at moderate BNL energies, $\sqrt{s} \sim 3.5 \text{ GeV}^2$, (Blazey *et al.*, Carroll *et al.* 1998, White *al.* 1994) and easy to picture in the context of quark exchange.

- A decrease of R_{pp} with energy would be a compelling signal for an emerging role for color.
- The Landshoff/Sudakov model with or without randomizaiton gives explicit predictions for angular and helicity dependence.
- Asymptotic, color-randomized and "data fit" curves

FIG. 4. Angular distribution for proton-proton elastic scattering. The data fit is from Ref. [19].

Conclusions

- Wide angle elastic scattering is well-understood at "asymptotic" energies. Its energy-dependence reflects exchange of relevant degrees of freedom.
- We can learn of the applicability of the formalism, and much more, by comparing NN to $\bar{N}N$ elastic and to the production of hyperons over a wider range of energies and angles.
- Similarly for the comparison of analogous patterns for mesonmeson, meson-baryon and photon-hadron reactions.
- Recent advances in tree-level scattering amplitudes may make previously unthinkable calculations possible.
- Duality-based insights may have shed new light on valence light-cone wave functions.

(Brodsky, de Teremond; Grigoryan, Radyushkin recent)

• It's a good time to revisit large momentum transfer elastic scattering in a time of expanding capabilities in experiment and theory.