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• Some classic results and

• Recalling some work with J. Botts and M. Sotiropoulos.

• Primarily on hadron-hadron reactions, but with implications for photon-induced pro-
cesses.

I. Quark counting, the valence state and geometric counting

II. Splitting the hard scattering (Landshoff)

III. The return of (approximate) parton counting at wide angles

IV. Exchanging quarks and ratios of particle-antiparticle to particle-particle
elastic scattering

V. Conclusions
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I. Quark counting, the valence state and geometric counting

• Parton model applied to high-energy elastic scattering
(1973: Brodsky, Farrar; Matveev, Muradyan, Tavkhelidze)

• Elastic scattering is through the valence state:

– Parton picture: in c.m., wave functions are Lorentz-contracted.

– large t requires all ni valence (anti-)quarks of hadron i in
a region of area 1/Q2 for both incoming hadrons.

– Likelihood is ∼
 1
Q2 × 1

πR2
H


nH−1

for each hadron.

– Geometric picture: Must be true of both incoming and
outgoing states, for overlap of wave functions.

– Scaling: assume that otherwise the amplitude is a function
only of the scattering angle.

– The result, at fixed s/t (c.m. scattering angle):

dσ

dt
=
f(s/t)

s2


m2

s



∑4
i=1 (ni− 1)
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How it looks:

R i

1/Q

Just before
Just after
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And also:

overlap of incoming
wave functions

overlap of outgoing
wave functions

Quark counting picture just at the moment of collision
for mesons
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• The corresponding elastic amplitude
(1979: Brodsky and Lepage, Efremov and Radyushkin)

M(s, t;hi) =
∫ 4∏
i=1

[dx] φ(xm,i, λm,i, hi;µ)

×MH


xn,ixm,jpi · pj

µ2
;λn,i, hi



with factorized & evolved valence (light-cone) wave functions
φ(xm,i, λm,i, hi;µ), and with

[dx] = dx1,idx2,idx3,i δ
1− 3∑

n=1
xn,i



for helicities: hi (hadron) λn,i (quarks)
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• In principle straightforward, but:

– For NN scattering, MH is thousands of diagrams even at
tree level, although with recent advances, 3→ 3 should be
manageable.

– Knowledge of the wave functions is incomplete.

– Soft effects at higher orders are not under full control here.
(Duncan and Mueller, 1979 and see below)
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II. Splitting the hard scattering (Landshoff)

overlap of incoming
wave functions

overlap of outgoing
wave functions

b

Two independent scatterings for meson-meson scattering
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• 1/Q→ RH in amplitude ⇒ 1/s→ R2
H in cross section.

• This geometric configuration gives for NN at fixed angle (s/t)
(1974: Landshoff)

dσ

dt
=
f(s/t)

s2


1

s πR2
H


6

• And for s� −t� ΛQCD it gives

dσ

dt
=
F (s)

t2


1

t πR2
H


6

• Experiment: the latter works, the former doesn’t.
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III. The return of (approximate) parton counting at wide angles

• Resolution of the single/triple scattering ambiguity in radia-
tion:

b
b

-8



Scattering of isolated color charges wants to produce radia-
tion in the incoming and outgoing directions. Configurations
without such radiation are suppressed unless b is small. The
full amplitude is the result of a competition between geomet-
ric enhancement and radiation suppression.

b
b

-7



• b is conjugate to Q =
√
−t. At −t increases toward s, radia-

tive corrections force the b’s to 1/
√
s and geometric picture

should be recovered approximately.
(∼ 1980: Brodsky, Lepage; Mueller; Landshoff, Pritchard)

P

PP

P1

2

3

4

b

b

1

2

x
y

1-x-y

x
y

1-x-y
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• Color-singlet hadrons ⇒

M(s, t) =
N

stu

∑
f

∫ 1
0

dxdy

x2y2(1− x− y)2

×
∫
db1db2 Trcolor

U(biQ)M1M2M3


× ∏
i=1,2,3,4

ΨHi
(x, y, b1, b2)

• The Trace
[
U(biQ)M1M2M3

]
ties color together and in-

cludes εabc for colors of three quark, with possible color ex-
change in each hard scattering M i(xipj).
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• The wave functions behave as

Ψ(x, y, bi) ∼ ΨNP (x, y, bi) exp[− ln2(1/Qbi)]

→ φasy(xj) exp[− ln2(1/Qbi)]

• This gives the asymptotic amplitude, an example of
“Sudakov resummation”:
(1979: Botts and Sterman)

M(s, t) =
N

stu

∑
f

∫ 1
0

dxdy

x2y2(1− x− y)2
∏

i=1,2,3,4
φi,asy(x, y)

×
∫
db1db2 Trcolor

U(biQ)M1M2M3


× e−S1(biQ)−S2(biQ)−S3(biQ)
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• At large Q for each scattering, radiation suppression drives
the hard scatterings back together.

• At moderate (xQ)2, (yQ)2, amplitude is dominated by the
“boundary conditions,” ΨNP (x, y, bi) rather than asymptotic
behavior.
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IV. Exchanging quarks and ratios of particle-antiparticle to particle-
particle
elastic scattering

• All this applies to NN , N̄N , etc.

• Computations are simpler for the “triple scattering” picture,
and can be compared.

• Early on, contrast was made between gluon and quark ex-
change processes. pQCD factorization has both.
(Ramsey and Sivers, 1992, after Gunion, Blankenbecler, Brodsky, 1973 )
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• Quark exchange, of course, is not possible for pp̄→ pp̄. For
pp there are 23 ways of connecting incoming and outgoing
quarks compared to only one for pp̄.

• The BNL experiments: ratios seems roughly consistent with
this counting!

RN =

dσNN̄
dt

dσNN
dt

|90 deg ∼
1

40

• Caveat in any pQCD picture – how to reform an antisymmetric
color combination of quarks when they are exchanged?

• Sotiropoulos (1996) studied this issue in the Landshoff scat-
tering picture. He found that it works qualitatively only with a
“color randomization” picture in which the factor

U(bQ) ∏
iM

i


is independent of the flavor flow. He found Rp ∼ 1/30 at
ninety degrees with color randomization, ∼ 1/3 without.
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tions of the hard scatterings Mm along the !" direction and

by b̃m their mutual transverse separations defined as

b̃ 1!b2"b3 , b̃2!b1"b3 , b̃3! b̃2" b̃1 . #5$

The three-quark component of the proton wave function is

obtained as a Fourier transform of the three-quark operator

%9&

Y'()#k1 ,k2 ;P ,h $!
#!2E $1/2

Nc!
! d4y1

#2*$4
eik1•y1

d4y2

#2*$4
eik2•y2

#+0"T%u'
a #y1$u(

b #y2$d)
c #0 $&"P ,h,-abc ,

#6$

where E is the energy of the fast moving proton and h its

helicity. The wave function is decomposed in terms of va-

lence quark spinors with definite helicity. Defining the di-

mensionless structures %10&

M'()
#1 $ !#E1E2E3$

"1/2u'#k1 ,$ $u(#k2 ," $

#d)#P"k1"k2 ,$ $,

M'()
#2 $ !#E1E2E3$

"1/2u'#k1 ," $u(#k2 ,$ $

#d)#P"k1"k2 ,$ $, #7$

M'()
#3 $ !"#E1E2E3$

"1/2u'#k1 ,$ $u(#k2 ,$ $

#d)#P"k1"k2 ," $,

where E1 , E2 , and E3 are the energies of the two u quarks

and the d quark, respectively, we obtain the helicity decom-

position of the wave function. In impact parameter ( b̃-$
space and for h!$ this is

Ỹ '()#x1 ,x2 ,x3 , b̃1 , b̃2 ;h!$ $

!
21/4

8Nc!
%P 123M'()

#1 $ $P 213M'()
#2 $ $2T 123M'()

#3 $ & , #8$

where

T 123.
1

2
#P 132$P 231$, #9$

and P 123.P (x1 ,x2 ,x3 ; b̃1 , b̃2) is the proton wave function
projected along the !" direction. Its dependence on the

transverse separations b̃m can be computed perturbatively via

soft gluon resummation and results in a Sudakov exponent to

be specified below. The connection of P to the usual light-

cone distribution amplitude / is given in perturbation theory

via

P #x1 ,x2 ,x3 , b̃1→0,b̃2→0;"$! f N#"$/#x1 ,x2 ,x3 ;"$

$O„'s#"$…, #10$

where f N(") is an overall normalization parameter:

f N#"!1 GeV$!#5.2%0.3$#10"3 GeV2. #11$

In the asymptotic energy limit (P as)123 becomes symmetric

upon permutation of its arguments. The asymptotic light-

cone distribution amplitude is

/as#x1 ,x2 ,x3$!120x1x2x3 . #12$

For subasymptotic energies, model-dependent /’s %11& are
more suitable for reproducing the overall normalization of

the exclusive process in which the proton participates. Fi-

nally, the color structure of the hadronic wave function is of

the form -abc .
The main feature of the Landshoff mechanism for elastic

scattering is that the hard subprocess MH in Eq. #1$ is ap-
proximated by the product of three quark amplitudes Mm.

For qq scattering both t and u channels are available, Figs.

2#a$ and 2#b$, and for q̄q there are t and s channels, Figs.
2#c$ and 2#d$. Given the above classification, there are four
channel combinations that contribute to pp or np elastic

scattering, namely, the direct (ttt), Fig. 3#a$, single inter-
change (tuu$permutations), Fig. 3#b$, double interchange
(tuu$permutations), and total interchange (uuu). Simi-
larly, for p̄p the four possible combinations are obtained

from the above by crossing from interchange to annihilation

channels (u→s).

The color structure of the quark scatterings can be decom-

posed along a two-dimensional color flow basis (cI) 0ai1
,

I!1,2. For qq→qq , we choose the basis

FIG. 2. Exchange channels for quark-quark #a$ and #b$ and
antiquark-quark #c$ and #d$ scattering.

FIG. 3. Soft gluon exchange and color mixing for the direct

(ttt), #a$, and the single interchange (utt) channel, #b$, in baryon-
baryon elastic scattering. Hard gluons are not shown. Interpreted as

color graphs, these diagrams represent contributions to U222 , #a$,
and U211 , #b$.
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• Randomization possibly natural at moderate BNL energies,√
s ∼ 3.5 GeV2, (Blazey et al., Carroll et al. 1998, White al. 1994) and easy

to picture in the context of quark exchange.
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• A decrease of Rpp with energy would be a compelling signal
for an emerging role for color.

• The Landshoff/Sudakov model with or without randomizaiton
gives explicit predictions for angular and helicity dependence.

• Asymptotic, color-randomized and “data fit” curves
(Sotiropoulos, 1996, data fit Farrar, Wu, 1975 )

Color randomization gives slightly bigger ratio for np/pp

elastic scattering unlike the case of p̄p/pp . Both values of

Rnp/pp , though, are compatible with the experimental value

!20" Rnp/pp!0.34"0.05 measured over an energy range 3.10

GeV #!s# 4.75 GeV.

Finally, we examine the effect of color randomization on

the angular distribution of pp elastic scattering. To this end

we plot the differential cross section normalized at $!90°
vs cos$, Fig. 4. Landshoff scattering in the asymptotic limit
yields a steeply rising angular distribution, approximately of

the form (1#cos2$)#12. Color randomization softens this
distribution to an approximate form (1#cos2$)#10. This
is to be compared with the fit to the experimental data

(1#cos2$)#7 given by Farrar and Wu in !19". In all cases the
angular distribution is independent of the c.m. energy. The

color randomization distribution is in relatively good agree-

ment with the experimental fit for cos($)#0.3 but it becomes
much steeper away from the central region.

V. SUMMARY

We have considered wide-angle elastic scattering in the

Landshoff mechanism and organized the calculation making

explicit the effect of color. For scattering at moderate ener-

gies we have suggested a PQCD-motivated model which re-

alizes the observation that the elastic scattering is dominated

by quark interchange among the hadrons. This is assumed to

occur because the color of the constituent quarks is totally

randomized by soft gluon exchange. By implementing this in

the expressions for the hadronic helicity amplitudes we ob-

tain a cross section ratio R p̄ p/pp which is an order of magni-

tude smaller than the asymptotic value and compatible with

the experimental measurements !6,7". This feature of

R p̄ p/pp is because of the nature of the Landshoff mechanism.

Because in this picture the elastic process occurs via inde-

pendent quark scattering, a change in the relative contribu-

tion between channels at the quark level has a sizable effect

in the hadronic cross section. Color randomization leads to

softening of the angular distribution in pp scattering, al-

though we found that away from the central region it is still

steeper than what experiment suggests.

On the theoretical side, the separation of gluons into hard

and soft becomes less clear away from asymptopia, because

of the small momentum transfers involved. Moreover, con-

servation of color and color randomization require to include

components of the hadronic wave function beyond the lead-

ing twist three-quark part. Another set of approximations we

made has to do with helicity conservation. In the moderate

energy regime, quark mass and intrinsic transverse momen-

tum corrections can be important. This is the reason why we

did not reproduce the %s#10 scaling of the elastic cross sec-

tion. We considered instead observables which are less sen-

sitive to the specific form of the hadronic wave function or

the factorization assumptions and mainly determined by the

flavor routing of the constituent quarks. Cross section ratios

involving meson scattering, where data are also available, are

currently under study. Moreover, it would be of interest to

analyze the contribution of the Landshoff mechanism rela-

tive to the QIM mechanism, as in Ref. !21", by taking into
account color randomization.

ACKNOWLEDGMENTS

The author would like to thank George Sterman for many

insightful discussions and suggestions.

APPENDIX

Because of isospin symmetry the wave function for the

neutron is obtained from the corresponding one for the pro-

ton via the substitution u→#d and d→u in Eqs. &7' and &8'.
For np elastic scattering, apart from the wave function com-

binations given in Eq. &42', an additional one is needed:
namely,

R4!!8P 123P 213P 312T 132$8P 132P 312P 213T 123$&1→2 '

$&1→3 '. &A1'

The np helicity amplitudes are

Anp&$$;$$ '!#
N&8('3

stu
!
0

1dx1dx2

x1
2x2
2x3
3 ! db̃1db̃2)s

3&*'exp&#S1#S2#S3'

%"Bttt&2R0'# s3t3 $
s3

ut2
$

s3

tu2
$$Bttt&R1$R1!$R2!'

su2

t3
$BttuR1!

su

t2
$Bttu&2R3!'

st

u2
% , &A2'

FIG. 4. Angular distribution for proton-proton elastic scattering.

The data fit is from Ref. !19".
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Conclusions

• Wide angle elastic scattering is well-understood at “asymp-
totic” energies. Its energy-dependence reflects exchange of
relevant degrees of freedom.

• We can learn of the applicability of the formalism, and much
more, by comparing NN to N̄N elastic and to the produc-
tion of hyperons over a wider range of energies and angles.

• Similarly for the comparison of analogous patterns for meson-
meson, meson-baryon and photon-hadron reactions.

• Recent advances in tree-level scattering amplitudes may make
previously unthinkable calculations possible.

• Duality-based insights may have shed new light on valence
light-cone wave functions.
(Brodsky, de Teremond; Grigoryan, Radyushkin recent)
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• It’s a good time to revisit large momentum transfer elastic
scattering in a time of expanding capabilities in experiment
and theory.
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