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Probabilistic interpretation of GPDs as Fourier
trafo of impact parameter dependent PDFs

H(x, 0,−∆2
⊥) −→ q(x,b⊥)

E(x, 0,−∆2
⊥) −→ ⊥ distortion of PDFs when the

target is ⊥ polarized

→֒ SSA &
∫

dxx2ḡ2(x)

DVCS ?
 GPDs

GPDs for x = ξ

What is orbital angular momentum?

Summary

~pγ ~pN d

u

π+
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Deeply Virtual Compton Scattering (DVCS)

virtual Compton scattering: γ∗p −→ γp (actually: e−p −→ e−γp)

‘deeply’: −q2γ ≫M2
p , |t| −→ Compton amplitude dominated by

(coherent superposition of) Compton scattering off single quarks

→֒ only difference between form factor (a) and DVCS amplitude (b) is
replacement of photon vertex by two photon vertices connected
by quark (energy denominator depends on quark momentum
fraction x)

→֒ DVCS amplitude provides access to momentum-decomposition of
form factor = Generalized Parton Distribution (GPDs).

γ
∗ γγ

∗

(a) (b)

...
...
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Generalized Parton Distributions (GPDs)

GPDs: decomposition of form factors at a given value of t, w.r.t. the
average momentum fraction x = 1

2 (xi + xf ) of the active quark

∫

dxHq(x, ξ, t) = F
q
1 (t)

∫

dxH̃q(x, ξ, t) = G
q
A(t)

∫

dxEq(x, ξ, t) = F
q
2 (t)

∫

dxẼq(x, ξ, t) = G
q
P (t),

xi and xf are the momentum fractions of the quark before and
after the momentum transfer
2ξ = xf − xi

GPDs can be probed in deeply virtual Compton scattering (DVCS)

γ
∗ γγ

∗

...
...
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Impact parameter dependent PDFs

define ⊥ localized state [D.Soper,PRD15, 1141 (1977)]

∣

∣p+,R⊥ = 0⊥, λ
〉

≡ N
∫

d2p⊥
∣

∣p+,p⊥, λ
〉

Note: ⊥ boosts in IMF form Galilean subgroup⇒ this state has
R⊥ ≡ 1

P+

∫

dx−d2x⊥ x⊥T
++(x) =

∑

i xiri,⊥ = 0⊥
(cf.: working in CM frame in nonrel. physics)

define impact parameter dependent PDF

q(x,b⊥) ≡
∫

dx−

4π

〈

p+,R⊥ = 0⊥
∣

∣ q̄(−x
−

2
,b⊥)γ

+q(
x−

2
,b⊥)

∣

∣p+,R⊥ = 0⊥
〉

eixp
+x−

→֒ q(x,b⊥) =
∫

d2
∆⊥

(2π)2 e
i∆⊥·b⊥H(x, 0,−∆2

⊥),

∆q(x,b⊥) =
∫

d2
∆⊥

(2π)2 e
i∆⊥·b⊥H̃(x, 0,−∆2

⊥),
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Impact parameter dependent PDFs

No relativistic corrections (Galilean subgroup!)

→֒ corrolary: interpretation of 2d-FT of F1(Q
2) as charge density in

transverse plane also free from relativistic corrections (Soper
1977; MB 2003)

q(x,b⊥) has probabilistic interpretation as number density

ξ = 0 essential for probabilistic interpretation

〈

p+′, 0⊥
∣

∣ b†(x,b⊥)b(x,b⊥)
∣

∣p+, 0⊥
〉

∼
∣

∣b(x,b⊥)〉|p+, 0⊥
∣

∣

2

works only for p+ = p+′

Reference point for IPDs is transverse center of (longitudinal)
momentum R⊥ ≡

∑

i xiri,⊥

→֒ for x→ 1, active quark ‘becomes’ COM, and q(x,b⊥) must
become very narrow (δ-function like)

→֒ H(x, 0,−∆2
⊥) must become ∆⊥ indep. as x→ 1 (MB, 2000)

→֒ consistent with lattice results for first few moments (→ Ph.Hägler)Transverse Structure of Hadrons – p.6/36
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x = momentum fraction of the quark

~b =⊥ position of the quark

unpolarized p (MB,2000)

Transverse Structure of Hadrons – p.7/36



x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1

u(x,b⊥) d(x,b⊥)

~pγ
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction (MB,2003)

photon interacts more strongly with
quark currents that point in direction
opposite to photon momentum

→֒ sideways shift of quark distributions

sign & magnitude of shift (model-
independently) predicted to be re-
lated to the proton/neutron anoma-
lous magnetic moment!
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x = 0.5x = 0.5

x = 0.3x = 0.3

bx

by

bx

by

bx

by

bx

by

bx

by

bx

by

x = 0.1

u(x,b⊥) d(x,b⊥)

~pγ
ẑ

ŷ
jz > 0

jz < 0

p polarized in +x̂ direction

lattice results (→ Ph.Hägler)
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GPD←→ SSA (Sivers)

example: γp→ πX

~pγ ~pN d

u

π+

u, d distributions in ⊥ polarized proton have left-right asymmetry in
⊥ position space (T-even!); sign “determined” by κu & κd

attractive FSI deflects active quark towards the center of momentum

→֒ FSI translates position space distortion (before the quark is
knocked out) in +ŷ-direction into momentum asymmetry that
favors −ŷ direction

→֒ correlation between sign of κpq and sign of SSA: f⊥q1T ∼ −κpq
f
⊥q
1T ∼ −κpq confirmed by HERMES data (also consistent with

COMPASS deuteron data f⊥u1T + f⊥d1T ≈ 0)
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⊥ deformation→ Quark-Gluon Correlations: g2(x)

DIS off ⊥ polarized target

→֒ g2(x) = gWW
2 (x) + ḡ2(x), with gWW

2 (x) ≡ −g1(x) +
∫ 1

x
dy
y g1(y)

ḡ2(x) involves quark-gluon correlations, e.g.

∫

dxx2ḡ2(x) =
1

3
d2 =

1

6MP+2
Sx

〈

P, S
∣

∣q̄(0)gG+y(0)γ+q(0)
∣

∣P, S
〉

√
2G+y ≡ G0y +Gzy = −Ey +Bx = −

[

~E + ~v × ~B
]y

(for ~v = −ẑ)

→֒ d2 → (average) ŷ-component of the) Lorentz-force acting on quark
in DIS (in the instant after being hit by the virtual photon) (MB, 2008)

sign of ⊥ deformation (κ)↔ sign of quark gluon correlations (d2)
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Accessing GPDs in DVCS

ℑADV CS(ξ, t) −→ GPD(+)(ξ, ξ, t)

only sensitive to ‘diagonal’ x = ξ

limited ξ range: −t = 4ξ2M2+∆
2
⊥

1−ξ2 ⇒ ξ ≤ ξmax for fixed t

ℜADV CS(ξ, t) −→
∫ 1

−1 dx
GPD(+)(x,ξ,t)

x−ξ probes GPDs off the

diagonal, but .....(Anikin, Teryaev,...)

Dispersion relations + LO factorization (A =
∫ 1

−1 dx
GPD(x,ξ,t)

x−ξ+iε ):

ℜA(ξ, t) =
∫ 1

−1
dx
GPD(x, ξ, t)

x− ξ =

∫ 1

−1
dx
GPD(x, x, t)

x− ξ +∆(t)

earlier derived from polynomiality
(Goeke,Polyakov,Vanderhaeghen)

→֒ Possible to ‘condense’ information A(ξ, t)↔
{

GPD(ξ, ξ, t)

∆(t)contained in ADV CS (fixed Q2,
assuming leading twist factorization)
into GPD(x, x, t) & ∆(t) Transverse Structure of Hadrons – p.12/36



A(ξ, t)←→ GPD(ξ, ξ, t), ∆(t)

→֒ better to fit parameterizations for GPD(x, x, t) plus ∆(t) to
ADV CS rather than parameterizations for GPD(x, ξ, t)?

even after ‘projecting back’ onto GPD(x, x, t), ℜA(ξ, t) still
provides new (not in ℑA) info on GPDs:

D-form factor

constraints from
∫

dx
GPD(x,x,t)

x−ξ on GPD(ξ, ξ, t) in

kinematically inaccessible range −t ≤ −t0 ≡ 4M2ξ2

1−ξ2

good news for model builders: as long as a model fits ℑA(ξ, t), it
should also do well for ℜA(ξ, t), provided

model has polynomility & allows for a D-form factor
example:

GPDDD(x, ξ, t) ≡ GPD(x, x, t)

plus suitable ∆(t) will automatically fit DVCS data and satisfy
polynomiality (trivially!) provided LO factorization & DR are
satisfied
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Application of
∫ 1

−1 dx
H(x,ξ,t)
x−ξ =

∫ 1

−1 dx
H(x,x,t)
x−ξ +∆(t)

take ξ → 0 (should exist for −t sufficiently large)

∫ 1

−1
dx
H(+)(x, 0, t)

x
=

∫ 1

−1
dx
H(+)(x, x, t)

x
+∆(t)

→֒ DVCS allows access to same generalized form factor
∫ 1

−1 dx
H(+)(x,0,t)

x also available in WACS (wide angle Compton

scattering), but t does not have to be of order Q2

→֒ after flavor separation, 1
F1(t)

∫ 1

−1 dx
H(+)(x,0,t)

x at large t provides

information about the ‘typical x’ that dominates large t form factor

For example, for GPDs with t-dependence ∼ exp
(

a · t(1− x)2
)

for
large x, as for example suggested by ‘finite size condition’ for

large x (MB, 2001, 2004), one finds 1
F1(t)

∫ 1

−1 dx
H(+)(x,0,t)

x

−t→∞−→ 1
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GPDs for x = ξ

1 − ζ

..

1

1 − ζ

ζ0
×

GPD(x, ζ, t)=
∑

n,λi

(1− ζ)1−n
2

∫ n
∏

i=1

dxidk⊥,i
16π3

16π3δ



1−
n
∑

j=1

xj



δ





n
∑

j=1

k⊥j



δ(x− x1)

×ψs′

(n)(x
′
i,k
′
⊥i, λi)

∗ψs
(n)(xi,k⊥i, λi),

GPD(x, ζ, t) =
√
1−ζ

1− ζ

2

H(x, ζ, t)− ζ2

4(1− ζ
2 )
√
1−ζE(x, ζ, t), for s′ = s

GPD(x, ζ, t) = 1√
1−ζ

∆1−i∆2

2M E(x, ζ, t), for s′ =↑ and s =↓

∆ is the transverse momentum transfer.

x′1 = x1−ζ
1−ζ and k′⊥1 = k⊥1 − 1−x1

1−ζ ∆⊥ for the active quark, and

x′i =
xi

1−ζ and k′⊥i = k⊥i +
xi

1−ζ∆⊥ for the spectators i = 2, ..., n.
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GPDs in ⊥ position space (n = 2)

GPD(x, ζ, t) =
∑

λi

∫

dk⊥,1
16π3

ψs′(x′1,k
′
⊥1, λi)

∗ψs(x1,k⊥1, λi),

x′1 = x1−ζ
1−ζ and k′⊥1 = k⊥1 − 1−x1

1−ζ ∆⊥ for the active quark

spectator momentum constrained by momentum conservation:
x2 = 1− x1 and k⊥2 = −k⊥1

Diagonalize by Fourier transform

ψ̃s(x, r⊥) =
∫

d2
k⊥

2π ψs(x,k⊥)e
ik⊥·r⊥

r⊥ is the ⊥ distance between active quark and spectator

→֒ GPD(x, ζ, t) ∝
∫

d2r⊥ψ̃
∗(x′, r⊥)ψ̃

∗(x′, r⊥)e
−i 1−x

1−ζ
r⊥·∆⊥
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GPDs in ⊥ position space (general case)

repeating the same steps in the general case (n ≥ 3) yields.......

GPD(x, ζ, t) =
∑

n

(1− ζ)1−n
2

∫ n
∏

i=1

d2r⊥i
2π

ψ̃(n)(x
′
i, r⊥i)

∗ψ̃s
(n)(xi, r⊥i)e

−i 1−x
1−ζ

(r⊥1−R⊥s)·∆⊥

R⊥s is the center of momentum of the spectators.

→֒ FT of GPD w.r.t. ∆⊥ gives overlap when active quark and
spectators are distance 1−x

1−ζ r⊥ apart
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GPDs in ⊥ position space (general case)

general case: ∆⊥ conjugate to 1−x
1−ζ r⊥

special case: ζ = 0 ⇒ 1−x
1−ζ r⊥ = (1− x)r⊥ = b⊥ = distance

between active quark and center of momentum of hadron.

special case: x = ζ ⇒ 1−x
1−ζ r⊥ = r⊥

→֒ for x = ζ, the variable that is (Fourier) conjugate to ∆⊥ is r⊥ the
distance between the active quark and the center of momentum of
the spectators

unlike the b⊥ distribution, which must become point-like for x→ 1,
the r⊥-distribution does not have to become narrow for x→ 1

Note:

−t = ζ2M2 +∆⊥
2

1− ζ
→֒ t-slope B and ∆2

⊥-slope B⊥ related via B = (1− ζ)B⊥
→֒ t-slope still has to go to zero as ζ → 1

→֒ study 1
1−ζ × t-slope versus ζ
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The nucleon spin pizza(s)

Ji Jaffe & Manohar

1
2∆Σ 1

2∆Σ

Jg
∆G

Lq

Lq

Lg

‘pizza tre stagioni’ ‘pizza quattro stagioni’

only 1
2∆Σ ≡ 1

2

∑

q ∆q common to both decompositions!
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example: angular momentum in QED

~Jγ =

∫

d3r ~r ×
(

~E × ~B
)

=

∫

d3r ~r ×
[

~E ×
(

~∇× ~A
)]

=

∫

d3r
[

Ej
(

~r × ~∇
)

Aj − ~r × ( ~E · ~∇) ~A
]

=

∫

d3r
[

Ej
(

~r × ~∇
)

Aj +
(

~r × ~A
)

~∇ · ~E + ~E × ~A
]

replace 2nd term (eq. of motion ~∇ · ~E = ej0 = eψ†ψ), yielding

~Jγ =

∫

d3r
[

ψ†~r × e ~Aψ + Ej
(

~r × ~∇
)

Aj + ~E × ~A
]

ψ†~r × e ~Aψ cancels similar term in electron OAM ψ†~r × (~p−e ~A)ψ
→֒ decomposing ~Jγ into spin and orbital also shuffles angular

momentum from photons to electrons!
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Ji-decomposition
1
2∆Σ

Jg

Lq

Ji (1997)

1

2
=

∑

q

Jq + Jg =
∑

q

(

1

2
∆q + Lq

)

+ Jg

with (Pµ = (M, 0, 0, 1), Sµ = (0, 0, 0, 1))

1

2
∆q =

1

2

∫

d3r 〈P, S| q†(~r)Σ3q(~r) |P, S〉 Σ3 = iγ1γ2

Lq =

∫

d3r 〈P, S| q†(~r)
(

~r × i ~D
)3

q(~r) |P, S〉

Jg =

∫

d3r 〈P, S|
[

~r ×
(

~E × ~B
)]3

|P, S〉

i ~D = i~∂ − g ~A
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Ji-decomposition
1
2∆Σ

Jg

Lq

~J =
∑

q
1
2q
†~Σq + q†

(

~r × i ~D
)

q + ~r ×
(

~E × ~B
)

applies to each vector component of nucleon
angular momentum, but Ji-decomposition usually
applied only to ẑ component where at least quark spin has
parton interpretation as difference between number densities

∆q from polarized DIS

Jq = 1
2∆q + Lq from exp/lattice (GPDs)

Lq in principle independently defined as matrix elements of

q†
(

~r × i ~D
)

q, but in practice easier by subtraction Lq = Jq − 1
2∆q

Jg in principle accessible through gluon GPDs, but in practice
easier by subtraction Jg = 1

2 − Jq
Ji makes no further decomposition of Jg into intrinsic (spin) and
extrinsic (OAM) piece
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Lq for proton from Ji-relation (lattice)

lattice QCD⇒ moments of GPDs (→ Ph.Hägler)

→֒ insert in Ji-relation

〈

J i
q

〉

= Si

∫

dx [Hq(x, 0) + Eq(x, 0)] x.

→֒ Lz
q = Jz

q − 1
2∆q

Lu, Ld both large!

present calcs. show
Lu + Ld ≈ 0, but

disconnected
diagrams ..?

m2
π extrapolation

parton interpret.
of Lq...
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Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑
q Lq

Lg

in light-cone framework & light-cone gauge
A+ = 0 one finds for Jz =

∫

dx−d2r⊥M
+xy

1

2
=

1

2
∆Σ +

∑

q

Lq +∆G+ Lg

where (γ+ = γ0 + γz)

Lq =

∫

d3r 〈P, S| q̄(~r)γ+
(

~r × i~∂
)z

q(~r) |P, S〉

∆G = ε+−ij
∫

d3r 〈P, S|TrF+iAj |P, S〉

Lg = 2

∫

d3r 〈P, S|TrF+j
(

~r × i~∂
)z

Aj |P, S〉
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Jaffe/Manohar decomposition
1
2∆Σ

∆G

∑
q Lq

Lg

1

2
=

1

2
∆Σ +

∑

q

Lq +∆G+ Lg

∆Σ =
∑

q ∆q from polarized DIS (or lattice)

∆G from
→
p
←
p or polarized DIS (evolution)

→֒ ∆G gauge invariant, but local operator only in light-cone gauge
∫

dxxn∆G(x) for n ≥ 1 can be described by manifestly gauge inv.
local op. (−→ lattice)

Lq, Lg independently defined, but

no exp. identified to access them

not accessible on lattice, since nonlocal except when A+ = 0

parton net OAM L = Lg +
∑

q Lq by subtr. L = 1
2 − 1

2∆Σ−∆G

in general, Lq 6= Lq Lg +∆G 6= Jg

makes no sense to ‘mix’ Ji and JM decompositions, e.g. Jg −∆G

has no fundamental connection to OAM
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Lq 6= Lq

Lq matrix element of

q†
[

~r ×
(

i~∂ − g ~A
)]z

q = q̄γ0
[

~r ×
(

i~∂−g ~A
)]z

q

Lz
q matrix element of (γ+ = γ0 + γz)

q̄γ+
[

~r × i~∂
]z

q
∣

∣

∣

A+=0

(for ~p = 0) matrix element of q̄γz
[

~r ×
(

i~∂−g ~A
)]z

q vanishes

(parity!)

→֒ Lq identical to matrix element of q̄γ+
[

~r ×
(

i~∂−g ~A
)]z

q (nucleon

at rest)

→֒ even in light-cone gauge, Lz
q and Lz

q still differ by matrix element

of q†
(

~r × g ~A
)z

q
∣

∣

∣

A+=0
= q† (xgAy − ygAx) q

∣

∣

A+=0
Transverse Structure of Hadrons – p.26/36



OAM in scalar diquark model

[M.B. + H. Budhathoki Chhetri (BC), 2009]

toy model for nucleon where nucleon (mass M ) splits into quark
(mass m) and scalar ‘diquark’ (mass λ)

→֒ light-cone wave function for quark-diquark Fock component

ψ
↑
+ 1

2

(x,k⊥) =
(

M +
m

x

)

φ ψ
↑
− 1

2

= −k
1 + ik2

x
φ

with φ = c/
√
1−x

M2−
k2
⊥

+m2

x
−

k2
⊥

+λ2

1−x

.

quark OAM according to JM: Lq =
∫ 1

0
dx

∫

d2
k⊥

16π3 (1− x)
∣

∣

∣
ψ
↑
− 1

2

∣

∣

∣

2

quark OAM according to Ji: Lq = 1
2

∫ 1

0
dxx [q(x) + E(x, 0, 0)]− 1

2∆q

 (using Lorentz inv. regularization, such as Pauli Villars
subtraction) both give identical result, i.e. Lq = Lq

not surprising since scalar diquark model is not a gauge theory
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OAM in scalar diquark model

But, even though Lq = Lq in this non-gauge theory

Lq(x) ≡
∫

d2k⊥
16π3

(1−x)
∣

∣

∣ψ
↑
− 1

2

∣

∣

∣

2

6= 1

2
{x [q(x) + E(x, 0, 0)]−∆q(x)} ≡ Lq(x)

0

0.05

0.1

0.15

0.2

0.2 0.4 0.6 0.8 1
x

L 
q (x)

L 
q (x)

→֒ ‘unintegrated Ji-relation’ does not yield x-distribution of OAM
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OAM in QED

light-cone wave function in eγ Fock component

Ψ↑
+ 1

2+1
(x,k⊥) =

√
2
k1 − ik2
x(1− x)φ Ψ↑

+ 1
2−1

(x,k⊥) = −
√
2
k1 + ik2

1− x φ

Ψ↑− 1
2+1

(x,k⊥) =
√
2
(m

x
−m

)

φ Ψ↑− 1
2−1

(x,k⊥) = 0

OAM of e− according to Jaffe/Manohar

Le =
∫ 1

0
dx

∫

d2k⊥(1− x)
[

∣

∣

∣
Ψ↑

+ 1
2−1

(x,k⊥)
∣

∣

∣

2

−
∣

∣

∣
Ψ↑

+ 1
2+1

(x,k⊥)
∣

∣

∣

2
]

e− OAM according to Ji Le =
1
2

∫ 1

0
dxx [q(x) + E(x, 0, 0)]− 1

2∆q

 Le = Le +
α
4π 6= Le

Likewise, computing Jγ from photon GPD, and ∆γ and Lγ from

light-cone wave functions and defining L̂γ ≡ Jγ −∆γ yields

L̂γ = Lγ + α
4π 6= Lγ

α
4π appears to be small, but here Le, Le are all of O(απ )Transverse Structure of Hadrons – p.29/36



OAM in QCD

→֒ 1-loop QCD: Lq − Lq = αs

3π (for jz = + 1
2 )

recall (lattice QCD): Lu ≈ −.15; Ld ≈ +.15

QCD evolution yields negative correction to Lu and positive
correction to Ld

→֒ evolution suggested (A.W.Thomas) to explain apparent
discrepancy between quark models (low Q2) and lattice results
(Q2 ∼ 4GeV 2)

above result suggests that Lu > Lu and Ld < Ld

additional contribution (with same sign) from vector potential due
to spectators (MB, to be published)

→֒ possible that lattice result consistent with Lu > Ld
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Summary

GPDs FT←→ IPDs (impact parameter dependent PDFs)

E(x, 0,−∆2
⊥) −→ ⊥ deformation of PDFs for ⊥ polarized target

⊥ deformation↔ (sign of) SSA (Sivers; Boer-Mulders)

⊥ deformation↔ (sign of) quark-gluon correlations (
∫

dxx2ḡ2(x))

DVCS at fixed Q2 ↔ GPDs(ξ, ξ, t),∆(t)

Fourier transform of GPDs w.r.t. ∆⊥ provides dependence of
overlap matrix element on 1−x

1−ζ r⊥ where r⊥ is separation between

active quark and the COM of spectators

→֒ for x = ζ, variable conjugate to ∆⊥ is r⊥
(note: ‘t-slope’ = (1− ζ)× ‘∆2

⊥-slope’)
1
2 − 1

2

∑

q

∫

dxx [Hq(x, ξ, 0) + Eq(x, ξ, 0)]−∆G 6= Lg
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pizza tre e mezzo stagioni

Chen, Goldman et al.: integrate by parts in Jg
only for term involving Aphys, where

A = Apure+Aphys with ∇·Aphys = 0 ∇×Apure = 0

1
2 =

∑

q Jq + Jg =
∑

q

(

1
2∆q + L′q

)

+ S′g + L′g with ∆q as in JM/Ji

L′q =

∫

d3x 〈P, S| q†(~x)
(

~x× i ~Dpure

)3

q(~x) |P, S〉

S′g =

∫

d3x 〈P, S|
(

~E × ~Aphys

)3

|P, S〉

L′g =

∫

d3x 〈P, S|Ei
(

~x× ~∇
)3

Ai
phys |P, S〉

i ~Dpure = i~∂ − g ~Apure

only 1
2∆q accessible experimentally
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example: angular momentum in QED

consider now, QED with electrons:

~Jγ =

∫

d3r ~x×
(

~E × ~B
)

=

∫

d3r ~x×
[

~E ×
(

~∇× ~A
)]

integrate by parts

~J =

∫

d3r
[

Ej
(

~x× ~∇
)

Aj +
(

~x× ~A
)

~∇ · ~E + ~E × ~A
]

replace 2nd term (eq. of motion ~∇ · ~E = ej0 = eψ†ψ), yielding

~Jγ =

∫

d3r
[

ψ†~r × e ~Aψ + Ej
(

~x× ~∇
)

Aj + ~E × ~A
]

ψ†~r × e ~Aψ cancels similar term in electron OAM ψ†~r × (~p−e ~A)ψ
→֒ decomposing ~Jγ into spin and orbital also shuffles angular

momentum from photons to electrons!
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pizza tre e mezzo stagioni

Chen, Goldman et al.: integrate by parts in Jg
only for term involving Apure, where

A = Apure+Aphys with ∇·Aphys = 0 ∇×Apure = 0
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B.L.T. pizza ?

Bakker, Leader, Trueman:

JM only applies for s = p̂

(helicity sum rule)

Ji applies to any component,
but parton interpretation only for Sz

For p 6= 0, Ji only applies to helicity

‘sum rule’ s ⊥ p̂

1

2
=

1

2

∑

a∈q,q̄

∫

dxha1(x) +
∑

a∈q,q̄,g
〈La

sT 〉

where La
sT component of La along sT

note:
∑

a∈q,q̄
∫

dxha1(x) not tensor charge (latter is: ‘q − q̄’)

La ∼ ψ†k×∇kψ

distinction between transversity and transverse spin obscure in
two-component formalism used
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B.L.T. pizza ?

‘B.L.T. sum rule’ s ⊥ p̂
1
2 = 1

2

∑

a∈q,q̄
∫

dxha1(x) +
∑

a∈q,q̄,s〈La
sT 〉

should already be suspicious as Tµν is chirally even (mq = 0) and

so should ~J ...

〈La
sT 〉 not accessible experimentally, i.e. B.L.T. not experimentally

falsifyable, but

studies (diquark model) under way to test B.L.T. ...
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