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Outline

® Probabilistic interpretation of GPDs as Fourier
trafo of impact parameter dependent PDFs

» H(xaoa _Ai) — Q(:C7bJ_)

® FE(zr,0,—A%) — 1 distortion of PDFs when the
target is L polarized
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I Deeply Virtual Compton Scattering (DVCYS)

® virtual Compton scattering: v*p — ~p (actually: e=p — e~ p)

® ‘deeply: —¢> > M?,|t| — Compton amplitude dominated by
(coherent superposition of) Compton scattering off single quarks

— only difference between form factor (a) and DVCS amplitude (b) is
replacement of photon vertex by two photon vertices connected
by quark (energy denominator depends on quark momentum
fraction x)

— DVCS amplitude provides access to momentum-decomposition of
form factor = Generalized Parton Distribution (GPDs).




I Generalized Parton Distributions (GPDs)

® GPDs: decomposition of form factors at a given value of ¢, w.r.t. the
average momentum fraction x = 3 (z; + z ) of the active quark

[astieet) = Fio) [ def(e60 = G40
[sE ety = Fi@) [ doBy(eg 0 = Gh),

# z; and x; are the momentum fractions of the quark before and
after the momentum transfer

o 25233]0—33@'

® GPDs can be probed in deeply virtual Compton scattering (DVCS)




I | mpact parameter dependent PDFs

® define L localized state [D.Soper,PRD15, 1141 (1977)]

’p+7RJ_ — OJ_a)\> EN/dQPJ_ ’p+7pJ_7)‘>

Note: L boosts in IMF form Galilean subgroup = this state has
R, = %fdx_dzxLxLTJFJr(aj) =>.ar; . =0,
(cf.: working in CM frame in nonrel. physics)

®» define impact parameter dependent PDF

dx™ ~ T T izpTx”
q(z,b) 5/4—7T (pR. =0] Q(_E’ bL)WJFCI(?a b )[pthRL=0,)e™

a(@,br) = [ Gope P H(@, 0,-AY),

Agla.by) = [ Grre' et H@,0,-A)




I | mpact parameter dependent PDFs

No relativistic corrections (Galilean subgroup!)

°

— corrolary: interpretation of 2d-FT of F;(Q?) as charge density in
transverse plane also free from relativistic corrections (Soper
1977; MB 2003)

® ¢(z,b, ) has probabilistic interpretation as number density
® ¢ = 0 essential for probabilistic interpretation

<p+/7OJ_‘ bT(x7bJ_)b(:EabJ_) }p+7OJ_> ~ }b(x7bJ_)>‘p+7OJ_‘2

works only for p* = p™’

® Reference point for IPDs is transverse center of (longitudinal)
momentum R, =) . zir; |

— for x — 1, active quark ‘becomes’ COM, and ¢(x, b ) must
become very narrow (o-function like)

H(z,0,—A?) must become A indep. as x — 1 (MB, 2000)

consistent with lattice results for first few moments (— Ph.iH&gler)
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q(z, b, ) for unpol. p

. SR

unpolarized p (MB,2000)
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x = momentum fraction of the quark

b = L position of the quark
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N

\QC

04’

?
l 0.4 . - >0
Dy 5

w2 (5
/ \

77 <0

\J photon interacts more strongly with
guark currents that point in direction

U

) o opposite to photon momentum
— sideways shift of quark distributions

»,  ® sign & magnitude of shift (model-

iIndependently) predicted to be re-
lated to the proton/neutron anoma-
lous magnetic moment!
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lts (— Ph.Hagler)

p polarized in +2 direction




I GPD +— SSA (Sivers)

® example: vp —» X

— — // 7-‘-
P~ PN ‘d) )/
AN, R

\ /

® «,d distributions in L polarized proton have left-right asymmetry in
| position space (T-even!); sign “determined” by x,, & x4

9

attractive FSI deflects active quark towards the center of momentum

— FSI translates position space distortion (before the quark is
knocked out) in 4g-direction into momentum asymmetry that
favors —¢ direction

— correlation between sign of I’ and sign of SSA: fird ~ —KD

® [ ~ —x? confirmed by Hermes data (also consistent with
Compass deuteron data fi-% + fi-¢ ~ 0)



I | deformation — Quark-Gluon Correlations. go(x)

® DIS off L polarized target

— gao(x) = gV (@) + ga(2), with g}V (z) = —g1(2) + [, g (y)

® g.(x) involves quark-gluon correlations, e.g.

_ 1 1 _
/ dea*ga(w) = d2 = g (P S [(0)9G ™ (01774 (0)| P, 5)

°

— 1Y
V2GHY = G { G = —EY  B¥ = — [E+5><B} (for 7 = —2)

— dy — (average) y-component of the) Lorentz-force acting on quark
In DIS (in the instant after being hit by the virtual photon) (MB, 2008)

®» sign of L deformation (k) < sign of quark gluon correlations (d-)



I Accessing GPDsIn DVCS

o %-ADVCS(fa t) — GPD(+) ('57 'fa t)
# only sensitive to ‘diagonal’ x = £

42 M2 +A%
1—-¢2

o limited £ range: —t = = & < &nae Tor fixed ¢

® RApves(Et) — [ da:GPD::éx’g’t) probes GPDs off the
diagonal, but .....(Anikin, Teryaeyv,...)

GPD(:U,S,t)).

® Dispersion relations + LO factorization (A = f_ll do=F=275

L' GPD(z,&,t) /1 GPD(z,x,t) NG

RA(E, ) :/ dx = dx

—1 r—§ —1 r—§&

® carlier derived from polynomiality

(Goeke,Polyakov,Vanderhaeghen)

<+ Possible to ‘condense’ information A(E,1) H{ GPD(&,&,t)

contained in Apy s (fixed Q2, A(t)
assuming leading twist factorization)

into GPD(x.x.,t) & A(t)



A(§,t) <= GPD(E, &, 1), A(t)

— better to fit parameterizations for GPD(x, z,t) plus A(t) to
Apvcg rather than parameterizations for GPD(z,&,t)?

® even after ‘projecting back’ onto GPD(z, z,t), RA(E,t) still
provides new (not in & A4) info on GPDs:
# D-form factor
» constraints from [ dzSE2E5D on GPD(E, €,t) in

3
. . . . 2 +2
kinematically inaccessible range —t < —to = 45

® good news for model builders: as long as a model fits 3A(&, t), it
should also do well for RA(E, ), provided
# model has polynomility & allows for a D-form factor

& example:
GPDpp(x,&,t) = GPD(z,z,t)

plus suitable A(¢) will automatically fit DVCS data and satisfy
polynomiality (trivially!) provided LO factorization & DR are
satisfied



Application of [, dz” ’ft = [ dpTEnl (1)

® take £ — 0 (should exist for —t sufficiently large)

bOH) t bOH®) t

—1 £ -1 X

— DVCS allows access to same generalized form factor

f_ll dx H(Hf’o’” also available in WACS (wide angle Compton
scattering), but ¢ does not have to be of order Q?

. (+) (o .

— after flavor separation, #(t) f_ll de fc 0.0 at large t provides
Information about the ‘typical x’ that dominates large ¢ form factor

® For example, for GPDs with ¢-dependence ~ exp (a - t(1 — z)?) for
large x, as for example suggested by ‘finite size condition’ for

large « (MB, 2001, 2004), one finds %(t) f_ll dr H("‘):(Cx,(),t) —t—00




I GPDsfor x = £

\ A=)
Iy

GPD(x,C,t):Z(l—g)l—f/H e T EE SR L ) Pl ICEaY

nsAi i=1 j=1 j=1

XQP(S;,,) (7, Ky Ad) iy (i, kis i),

°

GPD(z,(,t) = 11—C A12_]\ZA2E($, ¢,t), for s’ =t and s =]

A IS the transverse momentum transfer.

7 = xll_—f andk/,, =k, | — 11__921 A | for the active quark, and

T, = 1Jiic and k', =k, ; + 1w—icAl for the spectators i = 2, ..., n.

© oo b




GPDsin L position space (n = 2)

dk 1 . s
GPD(x,(,t) Z/ 5 U (2K, ) (e ko M),
®» o =2% CC and k', =k, — {=%+ A for the active quark

® spectator momentum constralned by momentum conservation:
To =1 — a1 andku = -k 4

Diagonalize by Fourier transform
9o ’(ﬂSCIZI' fd wska_) ik r|
® r isthe L distance between active quark and spectator

~ GPD(x,(,t) o [ dPr g (2l ry )i (2l xy e T A



I GPDsin L position space (general case)

® repeating the same steps in the general case (n > 3) yields.......

mn - d21‘ At * 7.8 —il_—mr — .
GPD(x,(,t) =) (1-¢)' 2/1_[ 2; D) (@5, 7 12) G (i, 71 )e i TR A
1=1

n

®» R, isthe center of momentum of the spectators.

— FT of GPD w.r.t. A, gives overlap when active quark and

. - x—C x
spectators are distance {—¢r | apart N
1-¢ i i 1

} }




I GPDsin L position space (general case)

9

9

b

b

0

general case: A | conjugate to 3 T=¢T1

specialcase: (=0 = i fgrL = (1 —x)r, = b, = distance

between active quark and center of momentum of hadron.

special case: x =¢ = }er_rL

for x = (, the variable that is (Fourier) conjugate to A | isr the
distance between the active quark and the center of momentum of
the spectators

unlike the b, distribution, which must become point-like for z — 1,
the r | -distribution does not have to become narrow for z — 1

Note:
CCM*+ A7
1—-¢
t-slope B and AZ -slope B, related via B = (1 —()B.

_t =

t-slope still hasto goto zeroas ( — 1

study ﬁ x t-slope versus ¢



I The nucleon spin pizza(s)

Ji Jaffe & Manohar

‘pizza tre stagioni’ ‘pizza quattro stagioni’

® only ;A% = 33 Ag common to both decompositions!



I example: angular momentum in QED
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® replace 24 term (eq. of motion V - E = ¢5° = eyie)), yielding
J, :/d3r {@DTFX e Ay + B (Fx ﬁ) Aj+ﬁ><fq

® i x e Ay cancels similar term in electron OAM 17 x (F—eA)y

— decomposing f,y Into spin and orbital also shuffles angular
momentum from photons to electrons!



with (P* = (M, 0,0,1), S* = (0,0,0, 1))

1 1
Rt = §/d3T (P, S| q" (M) 3q(7) | P, S) 2% =iy'y?

L, = /d%« (P.S|4'(7) (7 x @'5)3 J(7) P, S)

J, = /d3r<P,S| {f’x (EXE)T)W,S)
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L I

J = Zq%qTiq—l—qT (sz’ﬁ)q%—?x (Ex é)
applies to each vector component of nucleon

angular momentum, but Ji-decomposition usually
applied only to Z component where at least quark spin has

parton interpretation as difference between number densities

Aq from polarized DIS

J, = Aq + L, from expl/lattice (GPDs)

L, in principle independently defined as matrix elements of

q' (Fx z‘ﬁ) g, but in practice easier by subtraction L, = J, — %Aq

J, In principle accessible through gluon GPDs, but in practice

easier by subtraction J, = 1 — J,

Ji makes no further decomposition of .J, into intrinsic (spin) and
extrinsic (OAM) piece



I L, for proton from Ji-relation (lattice)

® |attice QCD = moments of GPDs (— Ph.Hagler)

— nsert in Ji-relation

(JL) = Si/dx [Hy(2,0) + E,(z,0)] .

zZ _ Tz 1
— Lq_Jq_ﬁAq

® [, L;both large!
® present calcs. show
L, + L;~ 0, but
# disconnected
diagrams ..?
m?2 extrapolation

parton interpret.
of L,...

e o

O
h

contributions to nucleon spin

o
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® in light-cone framework & light-cone gauge
AT =0onefinds for J* = [dx~d?r MY

1 1
where (v = 7Y + ~?)
L, = / Pr (P, S|a(Ft (7 xid) a(7) |P,S)

AG = gt™¥ / d>r (P, S| TtET A7 |P, S)

L, = 2/d3r<P,S|TrF+J' (in5>ZAj|P,S)




I Jaffe/M anohar decomposition

® o [ o ©

°

1 1

AY = Zq Aq from polarized DIS (or lattice)

from ?}7 or polarized DIS (evolution)
gauge invariant, but local operator only in light-cone gauge

[ dza” for n > 1 can be described by manifestly gauge inv.
local op. (— lattice)

L., L, independently defined, but
# no exp. identified to access them
# not accessible on lattice, since nonlocal except when A1t = 0

parton net OAM L = L, + > L, by subtr. £L =5 — JAY —
in general, £, # L, L, + + Jg

makes no sense to ‘mix’ Ji and JM decompositions, e.g. J, — AG
has no fundamental connection to OAM



Ly # £,

® [, matrix element of
q' {f’x (25— g/f)} qg= g7’ [f'x (zg—gffﬂ q
® 7 matrix element of (v =~% 4 77)

q‘*ﬁ [f’ X 25} q

A+=0

® (for p= 0) matrix element of g~ {F X (z’(’;—gﬁﬂ g vanishes
(parity!)
— L, identical to matrix element of g* [Fx (ig—gff)} g (nucleon

at rest)
— even in light-cone gauge, L? and £; still differ by matrix element

of ¢ (f’x g%Y)Zq

— A1 . T
iy = @ (zgAY —ygA )al 44—,



I OAM in scalar diquark model

[M.B. + H. Budhathoki Chhetri (BC), 2009]

® toy model for nucleon where nucleon (mass M) splits into quark
(mass m) and scalar ‘diquark’ (mass \)

— light-cone wave function for quark-diguark Fock component

k' + ik?
ol (k)= (M+2)e ol =S
. c/\1—x
with ¢ = MQ_ki/—l—mQ k2 +22 "

x T 1—=x

2

® quark OAM according to IM: £, = [} do [ “E4 (1 — ) ‘QPL

® quark OAM according to Ji: L, = %foldxa: [q(z) + E(2,0,0)] — 3 Aq

~ (using Lorentz inv. regularization, such as Pauli Villars
subtraction) both give identical result, i.e. L, = £,

® not surprising since scalar diguark model is not a gauge theory



I OAM in scalar diquark model

® But, even though L, = £, in this non-gauge theory

L) = [ fsa-nl),

i £ % {zlq(z) + E(z,0,0)]-Aq(z)} = Ly(z)

1673
0.2 L (x)
0.15 L ()
0.1 |
0.05
O 02 04 06 08 1

— ‘unintegrated Ji-relation’ does not yield x-distribution of OAM



I OAM in QED

® light-cone wave function in ey Fock component

‘1’1 e k) = ﬂ];zl__ilf)¢ vl (2 ki) = —\@klltf
\I!T_%H(x,kL) = \@(%—m)gb \I!T_%_l(a:,kL):O

® OAM of e~ according to Jaffe/Manohar
£e:f01d37fd2kJ_(1 [|\I!+1 1ka | ‘\I!Jr +1$k¢)|2]

® ¢~ OAM according to Ji L, f dz x [g(z) + E(z,0,0)] — Aq
> Le=Le+ 4= # Le

® Likewise, computing J, from photon GPD, and A~ and L., from
Iight-cone wave functions and defining L., = .J, — Ay yields

=Ly + = # L,
$® X appears to be small, but here L., L. are all of O(2)




I OAM in QCD

°

1-loop QCD: L, — L, = &= (for j, = +3)
recall (lattice QCD): L, ~ —.15; Ly ~ +.15

QCD evolution yields negative correction to L, and positive
correction to L,

evolution suggested (A.W.Thomas) to explain apparent
discrepancy between quark models (low Q?) and lattice results
(Q? ~ 4GeV?)

above result suggeststhat £, > L, and L; < L4

additional contribution (with same sign) from vector potential due
to spectators (MB, to be published)

possible that lattice result consistent with £,, > L4



I Summary

© o oo 0 @

GPDs <% IPDs (impact parameter dependent PDFs)
E(z,0,—A%) — L deformation of PDFs for | polarized target
| deformation « (sign of) SSA (Sivers; Boer-Mulders)

1 deformation <« (sign of) quark-gluon correlations (| dz 2%g2(x))
DVCS at fixed Q° <+ GPDs(&,€,t), A(t)

Fourier transform of GPDs W r.t. A, provides dependence of
overlap matrix element on 3 Crl where r | IS separation between
active quark and the COM of spectators

— for x = ¢, variable conjugateto A, isr

9

(note: ‘t-slope’ = (1 — {)x ‘A% -slope’)
%—— fdxx Hy(z,£,0) + Ey(z,&,0)] — AG # L,



I pizza tre e mezzo stagioni

#® Chen, Goldman et al.: integrate by parts in J,
only for term involving A s, Where

A=ApuetApny, with V-Aphys =0 VxXApure=0

® =3 J,+Jy=>,(58¢+ L))+ 5, + L, with Aq as in IM/Ji

B 3
r / &3z (P,S| ¢ () (f x Z-DWG) ¢(7) | P, S)

- N 3
S = /d% (P, S| (E x Aphy$> P, S)
: ~\3 .
L = / Po(PS|E (#xT) AL, |P.5)
& il—jpure — 7'5_ ggpure

» only %Aq accessible experimentally




I example: angular momentum in QED

® consider now, QED with electrons:

ﬁ:/dSfo(Ex}?):/dSrfx[Ex(ﬁxﬁ)}

® integrate by parts

f:/d?’r B9 (#x V) & 4 (75 A)V B+ Ex A
® replace 24 term (eq. of motion V - E = ¢5° = eyte), yielding
J, :/d?’r {@DTFX e Ay + E7 (fxﬁ) Aj+ﬁ><fq

® ¢t x e Ay cancels similar term in electron OAM 17 x (F—eA)y

— decomposing fv into spin and orbital also shuffles angular
momentum from photons to electrons!



I pizza tre e mezzo stagioni

#® Chen, Goldman et al.: integrate by parts in J,
only for term involving A ..., where

A=ApuetApny, with V-Aphys =0 VxXApure=0



B.L.T. pizza?

°

Bakker, Leader, Trueman:

JM only applies fors = p
(helicity sum rule)

Ji applies to any component,
but parton interpretation only for S,

For p # 0, Ji only applies to helicity &
‘sumrule’s L p

%:% Z_/dwh‘f(w)+ Z (Lor)

acq,q aeq)d).g

where L component of L* along st
note: 3 . . J dzhi(zr) nottensor charge (latter is: 'q — @)

LY ~ Qﬁk X Vk?,b

distinction between transversity and transverse spin obscure in
two-component formalism used



I B.L.T. pizza?

®» BLTsumrule’s L p
% — % ZaEq,q_ f dZIZ‘h{f(ZC) + Zaéq,(j,s<LgT>

® should already be suspicious as T#" is chirally even (m, = 0) and

so should J...
® (L ) not accessible experimentally, i.e. B.L.T. not experimentally

falsifyable, but
® studies (diguark model) under way to test B.L.T. ...
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