Extraction of the Compton Form Factor \mathcal{H} from recent DVCS measurements at JLab

H. MOUTARDE, for the CLAS group at Saclay

Irfu/SPhN, CEA-Saclay

Exclusive 2010 Workshop - 05 / 18 / 2010

1. Preliminary analysis

2. Fitting strategies

3. Results
DVCS described by 4 Compton Form Factors.
Approximations: quark sector, leading twist and leading order.

- Example: GPD H

$$H = \int_{-1}^{+1} dx \, H(x, \xi, t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right)$$

- Integration yields real and imaginary parts to H:

$$\text{Re}H = \mathcal{P} \int_{-1}^{+1} dx \, H(x, \xi, t) \left(\frac{1}{\xi - x} - \frac{1}{\xi + x} \right)$$

$$\text{Im}H = \pi \left(H(\xi, \xi, t) - H(-\xi, \xi, t) \right)$$

- Relation between $\text{Im}H$ and $\text{Re}H$ weakly constrained by dispersion relations. However see:

K. Kumericki and D. Müller, arXiv:0904.0458
G. Goldstein and S. Liuti, DIS2009
Selected JLab data: recent DVCS measurements. Fine kinematic binning and large kinematic coverage.

Hall A: helicity-dependent and independent cross sections

- 12 bins: 1 value of x_B, 3 values of Q^2 and 4 values of t.
- Each kinematic bin contains 24 ϕ-bins.
- Statistical uncertainties:
 - helicity-dependent: at least 20%
 - helicity-independent: \simeq 5%

Hall B: Beam Spin Asymmetries

- 62 bins: 5 value of x_B, 4 values of Q^2 and 5 values of t.
- Each kinematic bin contains (at most) 12 ϕ-bins.
- Statistical uncertainties: \simeq 25%
Analytic $ep \to ep\gamma$ cross sections.
Interference between Bethe-Heitler and VCS processes treated exactly.

Example: DVCS helicity-dependent cross section at twist 2

- BKM formalism:
 \[C_1 \sin \phi \text{Im} \left(\mathcal{H} + \frac{x_B}{2-x_B} \left(1 + \frac{F_2}{F_1}\right) \tilde{\mathcal{H}} - \frac{t}{4M^2} \frac{F_2}{F_1} \mathcal{E} \right) \]

A.V. Belitsky, D. Mueller and A. Kirchner

- GV formalism:
 \[C_2 \sin \phi \text{Im} \left(\mathcal{H} + c_\mathcal{E} \mathcal{E} + c_{\tilde{\mathcal{H}}} \tilde{\mathcal{H}} + c_{\tilde{\mathcal{E}}} \tilde{\mathcal{E}} \right) \]

P.A.M. Guichon and M. Vanderhaeghen, unpublished
Analytic $ep \rightarrow ep\gamma$ cross sections.
Interference between Bethe-Heitler and VCS processes treated exactly.

Example: DVCS helicity-dependent cross section at twist 2

- BKM formalism: coefficients do not depend on Q^2

$$ C_1 \sin \phi \text{Im} \left(\mathcal{H} + \frac{x_B}{2-x_B} \left(1 + \frac{F_2}{F_1} \right) \mathcal{H} - \frac{t}{4M^2} \frac{F_2}{F_1} \mathcal{E} \right) $$

A.V. Belitsky, D. Mueller and A. Kirchner

- GV formalism: coefficients depend on Q^2

$$ C_2 \sin \phi \text{Im} \left(\mathcal{H} + \frac{c_{\mathcal{E}}}{20 \%} \mathcal{E} + \frac{c_{\tilde{\mathcal{H}}}}{20 \%} \tilde{\mathcal{H}} + \frac{c_{\tilde{\mathcal{E}}}}{30 \%} \tilde{\mathcal{E}} \right) $$

P.A.M. Guichon and M. Vanderhaeghen, unpublished
Main assumptions.
Expectation: extraction of \mathcal{H} with $\geq 40\%$ total uncertainty.

- **Twist 2 accuracy**
 - Early Q^2-scaling was observed in Hall A.
 - Similar recent result concerning a subset of JLab data.
 - M. Guidal, arXiv:1003.0307
 - Small higher twist contribution in Hermes data.
 - D. Zeiler et al., DIS2008

- **H-dominance**
 - Dramatically decreases the number of degrees of freedom in the fits.
 - Expectations: *systematic error between 20 and 50 %.*
 - Systematic error $\lesssim 25\%$ from direct test of hypothesis with VGG model.
 - The most questionable assumption so far?
Local fits.
Fits on each kinematic bin to twist 2 expressions.

- Keep bins with $\frac{|t|}{Q^2} < \frac{1}{2}$.
- Low model dependence (H-dominance, twist 2).
- But fits may still be underconstrained.

- **Estimation** of systematic errors caused by H-dominance hypothesis by fitting data with subdominant GPDs set to 0 or to their VGG value.
Global fit.
Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_+:
\[H_+(x, \xi, t, Q^2) = H(x, \xi, t, Q^2) - H(-x, \xi, t, Q^2) \]

- Dual model parametrization of H_+:
\[
2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta \left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}} \left(\frac{x}{\xi}\right) P_{2l} \left(\frac{1}{\xi}\right)
\]
Global fit.
Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_+:

$$H_+(x, \xi, t, Q^2) = H(x, \xi, t, Q^2) - H(-x, \xi, t, Q^2)$$

- Dual model parametrization of H_+:

$$2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta \left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) C_{2n+1}^2 \left(\frac{x}{\xi}\right) P_{2l} \left(\frac{1}{\xi}\right)$$

Legendre polynomial
Global fit.
Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_+:
 \[
 H_+(x, \xi, t, Q^2) = H(x, \xi, t, Q^2) - H(-x, \xi, t, Q^2)
 \]

- Dual model parametrization of H_+:
 \[
 2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta\left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}} \left(\frac{x}{\xi}\right) P_{2l} \left(\frac{1}{\xi}\right)
 \]
 Gegenbauer polynomial

Dual model parametrization of H_+:

\[
2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta\left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}} \left(\frac{x}{\xi}\right) P_{2l} \left(\frac{1}{\xi}\right)
\]

Gegenbauer polynomial
Global fit.
Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_+:
 $$H_+(x, \xi, t, Q^2) = H(x, \xi, t, Q^2) - H(-x, \xi, t, Q^2)$$

- Dual model parametrization of H_+:
 $$2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta \left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) C_{2n+1}^{3/2} \left(\frac{x}{\xi}\right) P_{2l} \left(\frac{1}{\xi}\right)$$
 Support: Resummed
Global fit.
Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_+:

$$H_+(x, \xi, t, Q^2) = H(x, \xi, t, Q^2) - H(-x, \xi, t, Q^2)$$

- Dual model parametrization of H_+:

$$2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta \left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}} \left(\frac{x}{\xi}\right) P_{2l} \left(\frac{1}{\xi}\right)$$

Model
t–dep.

with $B_{nl}(t, Q^2) = \left(\ln \frac{Q_0^2}{\Lambda^2} / \ln \frac{Q^2}{\Lambda^2}\right)^{\frac{\gamma_p}{\beta_0}} B_{nl}(t, Q_0^2)$.

Global fit.
Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_+:
 \[H_+(x, \xi, t, Q^2) = H(x, \xi, t, Q^2) - H(-x, \xi, t, Q^2) \]

- Dual model parametrization of H_+:
 \[
 \sum_{n=0}^{N} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta \left(1 - \frac{x^2}{\xi^2} \right) \left(1 - \frac{x^2}{\xi^2} \right) C_{2n+1}^2 \left(\frac{x}{\xi} \right) P_{2l} \left(\frac{1}{\xi} \right)
 \]
 Model
 t-dep.
 with $B_{nl}(t, Q^2) = \left(\ln \frac{Q_0^2}{\Lambda^2} / \ln \frac{Q^2}{\Lambda^2} \right)^{\gamma p/\beta_0} \frac{a_{nl}}{1 + b_{nl}(t-t_0)^2}$.

- Non-trivial correlation between x and t.
- a_{nl} and b_{nl} are fitted. t_0 is chosen prior to the fits.
Global fit.
Iterative fitting procedure and systematic uncertainties.

- Keep bins with $\frac{|t|}{Q^2} < \frac{1}{2}$ (1001 ϕ-bins fitted).

- $\frac{N(N+3)}{2}$ fitted coefficients for a given truncation N.
 - 10, 18 and 28-parameter fits for $N = 2, 3$ and 4.
 - **Estimation** of the truncation error by comparison of the results of these 3 fits.

- Iterative fitting procedure to handle large number of parameters.

- **Estimation** of systematic errors caused by H-dominance hypothesis by fitting data with subdominant GPDs set to 0 or to their VGG value.

- Purpose: smooth parametrization of data. **No extrapolation** outside the domain of the fit.
Effect of the truncation of the series.
Hall B data.

- 3 global fits qualitatively similar:
 \[N \chi^2/d.o.f. \]

 \[
 \begin{array}{c|c}
 N & \chi^2/d.o.f. \\
 \hline
 2 & 1.73 \\
 3 & 1.61 \\
 4 & 1.78 \\
 \end{array}
 \]

- No differences on Hall A data (next slide).

- \(N=2 \) fails to reproduce BSAs at small \(\xi \).

- \(N=3 \) always good and close to local fits.

- \(N=4 \) is uncontrolled at large \(\xi \).
Effect of the truncation of the series.
Hall A data.

- Local fits
- Global fit

Effect of the truncation of the series.
Hall A data.

- Local fits
- Global fit

Results

- Im\(\mathcal{H} \) and Re\(\mathcal{H} \)

Discussion

Conclusions
$\Im H$ on Hall B kinematics.
Q^2-dependence.

- Compatible results of local and global fits: strong consistency check.
- Realistic estimation of systematic uncertainties:
 - Comparable accuracy from local and global fits.
 - Accuracy in agreement with expectations.
- Restricted kinematic region suitable for GPD-analysis.
ReH on Hall B kinematics.

\(Q^2 \)-dependence.

- **Large fluctuations in \(ReH \) from local fits. Global fit is smoother.**

- **Unreliable extraction of \(ImH \) or \(ReH \) at large \(\xi \).**

- **\(ReH \) weakly constrained.**
$\text{Im} \mathcal{H}$ on Hall A kinematics.

t-dependence.

- Good agreement between results of local and global fits but...
- Discrepancy seems to be larger at small $|t|$!
- Sizeable scaling deviation for $t = -0.17 \text{ GeV}^2$.
- Noticeable deviations if

 $$\xi = x_B \left(\frac{1 + \frac{t}{2Q^2}}{2 - x_B + \frac{x_Bt}{Q^2}} \right) \to \frac{x_B}{2 - x_B}$$

- Call for a \textbf{twist 3 analysis}!
Im\(\mathcal{H}\) and Re\(\mathcal{H}\) on Hall A kinematics.

\(t\)-dependence.
Comparison with other studies (Hall A data).
Several approaches : BKM, BKM + ”hot fix”, GV, VGG.

- First extraction : BKM formalism without ”hot fix”.

 C. Muñoz Camacho et al.

- Model-dependent prediction. Fit in progress.

 S. Ahmad et al., arXiv:0708.0268

- VGG fitter code.

 M. Guidal, EPJA 37, 319 (2008)
 M. Guidal, arXiv:1003.0307

- ”Hot fix” for power suppressed contributions in BKM.

 A. Belitsky and D. Müller, PRD79, 014017 (2009)

- Global fit for all unpolarized proton target with BKM + ”hot fix”.

 K. Kumericki and D. Müller, arXiv:0904.0458
Comparison with previous studies (Hall A data).
Where are we today?

![Graph comparing results with previous studies](image)
Comparison to the VGG model.
Similar x_B-dependence but loss of information during the extraction.
Conclusions.
JLab DVCS measurements are a challenge to phenomenology.

- $\text{Im}\mathcal{H}$ extracted with 20 to 50% accuracy on a wide kinematic range.
- Realistic first estimation of systematic errors.
- Plausible early Q^2-scaling but twist 3 study necessary.
- Working without H-dominance hypothesis? In progress.
- More generally, a global fitting strategy is still missing.
Acknowledgments and references.

I am indebted to:
- the CLAS group at Saclay:
 - J. Ball
 - M. Garçon
 - P. Konczykowski
 - B. Moreno
 - S. Procureur
 - F. Sabatié

and also:
 - M. El Yakoubi
 - F.-X. Girod
 - M. Guidal
 - C. Muñoz Camacho
 - P. Guichon
 - M. Vanderhaeghen

References for this work: